12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Probability distributions and escape rates for ...
View graph of relations

« Back

Probability distributions and escape rates for systems driven by quasimonochromatic noise.

Research output: Contribution to journalJournal article

Published

Journal publication date06/1993
JournalPhysical Review E
Journal number6
Volume47
Number of pages14
Pages3996-4009
Original languageEnglish

Abstract

The motion of an overdamped particle in a bistable potential U(x), driven quasimonochromatic noise (high-frequency, narrow-band noise), has been investigated by means of analog simulation. The escape rate from one potential well to another was found to be exponentially small compared to the reciprocal mean first-passage time to the top of the potential barrier. The logarithm of the quasistationary probability distribution was observed to fall extremely sharply at a particular value of x, quite close to the equilibrium position. Theory describing the nonanalytic dependence of this logarithm on the bandwidth of the noise is presented and shown to be in good agreement with experiment. Data are also presented for a symmetric monostable potential. In a certain parameter range, the quasistationary distribution is demonstrated to be independent of the form of such a potential.