12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Revised time-of-flight calculations for high-la...
View graph of relations

« Back

Revised time-of-flight calculations for high-latitude geomagnetic pulsations using a realistic magnetospheric magnetic field model

Research output: Contribution to journalJournal article

Published

Journal publication date11/2005
JournalJournal of Geophysical Research
Journal numberA11
Volume110
PagesA11206
Original languageEnglish

Abstract

We present a simple time-of-flight analysis of Alfvén pulsations standing on closed terrestrial magnetic field lines. The technique employed in this study in order to calculate the characteristic period of such oscillations builds upon earlier time-of-flight estimates via the implementation of a more recent magnetospheric magnetic field model. In this case the model employed is the Tsyganenko (1996) field model, which includes realistic magnetospheric currents and the consequences of the partial penetration of the interplanetary magnetic field into the dayside magnetopause. By employing a simple description of magnetospheric plasma density, we are therefore able to estimate the period of standing Alfvén waves on geomagnetic field lines over a significantly wider range of latitudes and magnetic local times than in previous studies. Furthermore, we investigate the influence of changing season and upstream interplanetary conditions upon the period of such pulsations. Finally, the eigenfrequencies of magnetic field lines computed by the time-of-flight technique are compared with corresponding numerical solutions to the wave equation and experimentally observed pulsations on geomagnetic field lines.

Bibliographic note

Copyright (2005) American Geophysical Union.