We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Signals regulating multiple responses to woundi...
View graph of relations

« Back

Signals regulating multiple responses to wounding and herbivores.

Research output: Contribution to journalJournal article


Journal publication date2001
JournalCritical Reviews in Plant Sciences
Number of pages35
Original languageEnglish


Damage inflicted by herbivore feeding necessitates multiple defense strategies in plants. The wound site must be sealed and defense responses mounted against the herbivore itself and against invading opportunistic pathogens. These defenses are controlled both in time and space by highly complex regulatory networks that themselves are modulated by interactions with other signaling pathways. In this review, we describe the signaling events that occur in individual wounded leaves, in systemic unwounded regions of the plant, and between the plant, and other organisms, and attempt to place these events in the context of a coordinated system. Key signals that are discussed include ion fluxes, active oxygen species, protein phosphorylation cascades, the plant hormones jasmonic acid, ethylene, abscisic acid and salicylic acid, peptide signals, glycans, volatile chemicals, and physical signals such as hydraulic and electrical signals. Themes that emerge after consideration of the published data are that glycans and peptide elicitors are likely primary triggers of wound-induced defense responses and that they function through the action of jasmonic acid, a central mediator of defense gene expression, whose effect is modulated by ethylene. In the field, wound signaling pathways are significantly impacted on by other stress response pathways, including pathogen responses that often operate through potentially antagonistic signals such as salicylic acid. However, gross generalisations are not possible because some wound and pathogen responses operate through common jasmonate- and ethylene-dependent pathways. Understanding the ways in which local and systemic wound signaling pathways are coordinated individually and in the context of the plants wider environment is a key challenge in the application of this science to crop-protection strategies.