Home > Research > Publications & Outputs > Supersymmetric curvatons and phase-induced curv...
View graph of relations

Supersymmetric curvatons and phase-induced curvaton fluctuations.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Supersymmetric curvatons and phase-induced curvaton fluctuations. / McDonald, John.
In: Physical Review D, Vol. 69, No. 10, 19.05.2004, p. 103511.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

McDonald J. Supersymmetric curvatons and phase-induced curvaton fluctuations. Physical Review D. 2004 May 19;69(10):103511. doi: 10.1103/PhysRevD.69.103511

Author

McDonald, John. / Supersymmetric curvatons and phase-induced curvaton fluctuations. In: Physical Review D. 2004 ; Vol. 69, No. 10. pp. 103511.

Bibtex

@article{e6bac6981cf1409e8ca7615deaf18f20,
title = "Supersymmetric curvatons and phase-induced curvaton fluctuations.",
abstract = "We consider the curvaton scenario in the context of supersymmetry (SUSY) with gravity-mediated SUSY breaking. In the case of a large initial curvaton amplitude during inflation and a negative order H2 correction to the mass squared term after inflation, the curvaton will be close to the minimum of its potential at the end of inflation. In this case the curvaton amplitude fluctuations will be damped due to oscillations around the effective minimum of the curvaton potential, requiring a large expansion rate during inflation in order to account for the observed energy density perturbations, in conflict with cosmic microwave background constraints. Here we introduce a new curvaton scenario, the phase-induced curvaton scenario, in which de Sitter fluctuations of the phase of a complex SUSY curvaton field induce an amplitude fluctuation that is unsuppressed even in the presence of a negative order H2 correction and large initial curvaton amplitude. This scenario is closely related to the Affleck-Dine mechanism and a curvaton asymmetry is naturally generated in conjunction with the energy density perturbations. Cosmological energy density perturbations can be explained with an expansion rate H≈1012 GeV during inflation.",
author = "John McDonald",
note = "The first paper to show that generation of primordial density perturbations via the phase of a SUSY complex scalar field is possible irrespective of mass corrections from SUSY breaking. It has generated new research on the curvaton in otherwise incompatible SUSY inflation models and on isocurvature perturbations. 21 citations (SPIRES). RAE_import_type : Journal article RAE_uoa_type : Physics",
year = "2004",
month = may,
day = "19",
doi = "10.1103/PhysRevD.69.103511",
language = "English",
volume = "69",
pages = "103511",
journal = "Physical Review D",
issn = "1550-2368",
publisher = "American Physical Society",
number = "10",

}

RIS

TY - JOUR

T1 - Supersymmetric curvatons and phase-induced curvaton fluctuations.

AU - McDonald, John

N1 - The first paper to show that generation of primordial density perturbations via the phase of a SUSY complex scalar field is possible irrespective of mass corrections from SUSY breaking. It has generated new research on the curvaton in otherwise incompatible SUSY inflation models and on isocurvature perturbations. 21 citations (SPIRES). RAE_import_type : Journal article RAE_uoa_type : Physics

PY - 2004/5/19

Y1 - 2004/5/19

N2 - We consider the curvaton scenario in the context of supersymmetry (SUSY) with gravity-mediated SUSY breaking. In the case of a large initial curvaton amplitude during inflation and a negative order H2 correction to the mass squared term after inflation, the curvaton will be close to the minimum of its potential at the end of inflation. In this case the curvaton amplitude fluctuations will be damped due to oscillations around the effective minimum of the curvaton potential, requiring a large expansion rate during inflation in order to account for the observed energy density perturbations, in conflict with cosmic microwave background constraints. Here we introduce a new curvaton scenario, the phase-induced curvaton scenario, in which de Sitter fluctuations of the phase of a complex SUSY curvaton field induce an amplitude fluctuation that is unsuppressed even in the presence of a negative order H2 correction and large initial curvaton amplitude. This scenario is closely related to the Affleck-Dine mechanism and a curvaton asymmetry is naturally generated in conjunction with the energy density perturbations. Cosmological energy density perturbations can be explained with an expansion rate H≈1012 GeV during inflation.

AB - We consider the curvaton scenario in the context of supersymmetry (SUSY) with gravity-mediated SUSY breaking. In the case of a large initial curvaton amplitude during inflation and a negative order H2 correction to the mass squared term after inflation, the curvaton will be close to the minimum of its potential at the end of inflation. In this case the curvaton amplitude fluctuations will be damped due to oscillations around the effective minimum of the curvaton potential, requiring a large expansion rate during inflation in order to account for the observed energy density perturbations, in conflict with cosmic microwave background constraints. Here we introduce a new curvaton scenario, the phase-induced curvaton scenario, in which de Sitter fluctuations of the phase of a complex SUSY curvaton field induce an amplitude fluctuation that is unsuppressed even in the presence of a negative order H2 correction and large initial curvaton amplitude. This scenario is closely related to the Affleck-Dine mechanism and a curvaton asymmetry is naturally generated in conjunction with the energy density perturbations. Cosmological energy density perturbations can be explained with an expansion rate H≈1012 GeV during inflation.

U2 - 10.1103/PhysRevD.69.103511

DO - 10.1103/PhysRevD.69.103511

M3 - Journal article

VL - 69

SP - 103511

JO - Physical Review D

JF - Physical Review D

SN - 1550-2368

IS - 10

ER -