12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > The significance of deposition point standoff v...
View graph of relations

« Back

The significance of deposition point standoff variations in multiple-layer coaxial laser cladding (coaxial cladding standoff effects)

Research output: Contribution to journalJournal article

Published

Journal publication date05/2004
JournalInternational journal of machine tools & manufacture
Journal number6
Volume44
Number of pages12
Pages573-584
Original languageEnglish

Abstract

Direct laser deposition (DLD) is an additive manufacturing process that builds up a part layer-by-layer by fusing metal powder to a solid substrate. A coaxial laser and powder delivery head is commonly used, and here a critical process variable is the standoff distance between the nozzle and the material deposition point. This contribution investigates the role of this variable and the effect that it has on the final part geometry. The experimental results show that good layer consistency can, in fact, be obtained with no movement of the substrate between layers for more than 20 layers, or 10 mm under tested conditions, and that poorer results are obtained by regular movement of the substrate by a badly chosen constant amount. A theoretical analysis of the situation establishes a method to estimate melt pool size using an analytically calculated temperature near the heat source. Based on this, simple heat and mass flow models are established to allow some of the results to be explained. (C) 2004 Elsevier Ltd. All rights reserved.