Home > Research > Publications & Outputs > Tuning the thermoelectric properties of metallo...

Electronic data

  • c5nr06966a

    Final published version, 1.49 MB, PDF document

    Available under license: CC BY: Creative Commons Attribution 4.0 International License

Links

Text available via DOI:

View graph of relations

Tuning the thermoelectric properties of metallo-porphyrins

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
<mark>Journal publication date</mark>28/01/2016
<mark>Journal</mark>Nanoscale
Issue number4
Volume2016
Number of pages6
Pages (from-to)2428-2433
Publication StatusPublished
Early online date5/01/16
<mark>Original language</mark>English

Abstract

We investigated the thermoelectric properties of metalloporphyrins connected by thiol anchor groups to gold electrodes. By varying the transition metal-centre over the family Mn, Co, Ni, Cu, Fe, and Zn we are able to tune the molecular energy levels relative to the Fermi energy of the electrodes. The resulting single-molecule room-temperature thermopowers range from almost zero for Co and Cu centres, to +80 μV K−1 and +230 μV K−1 for Ni and Zn respectively. In contrast, the thermopowers with Mn(II) or Fe(II) metal centres are negative and lie in the range −280 to −260 μV K−1. Complexing these with a counter anion to form Fe(III) and Mn(III) changes both the sign and magnitude of their thermopowers to +218 and +95 respectively. The room-temperature power factors of Mn(II), Mn(III), Fe(III), Zn and Fe(II) porphyrins are predicted to be 5.9 × 10−5 W m−1 K−2, 5.4 × 10−4 W m−1 K−2, 9.5 × 10−4 W m−1 K−2, 1.6 × 10−4 W m−1 K−2 and 2.3 × 10−4 W m−1 K−2 respectively, which makes these attractive materials for molecular-scale thermoelectric devices.