Home > Research > Browse

Results for Statistics and Probability

Publications & Outputs

  1. High-dimensional time series segmentation via factor-adjusted vector autoregressive modelling

    Cho, H., Maeng, H., Eckley, I. A. & Fearnhead, P., 2/07/2024, In: Journal of the American Statistical Association. 119, 547, p. 2038-2050 13 p.

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

  2. Investigating Moderation Effects at the Within-Person Level Using Intensive Longitudinal Data: A Two-Level Dynamic Structural Equation Modelling Approach in Mplus

    Speyer, L. G., Murray, A. L. & Kievit, R., 1/06/2024, In: Multivariate Behavioral Research. 59, 3, p. 620-637 18 p.

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

  3. Regime-based precipitation modeling: A spatio-temporal approach

    Euán, C., Sun, Y. & Reich, B. J., 30/04/2024, In: Spatial Statistics. 60, 100818.

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

  4. Authors’ reply to the Discussion of ‘Automatic Change-Point Detection in Time Series via Deep Learning’ at the Discussion Meeting on ‘Probabilistic and statistical aspects of machine learning’

    Li, J., Fearnhead, P., Fryzlewicz, P. & Wang, T., 12/04/2024, In: Journal of the Royal Statistical Society: Series B (Statistical Methodology). 86, 2, p. 332-334 3 p.

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

  5. Automatic Change-Point Detection in Time Series via Deep Learning

    Li, J., Fearnhead, P., Fryzlewicz, P. & Wang, T., 12/04/2024, In: Journal of the Royal Statistical Society: Series B (Statistical Methodology). 86, 2, p. 273-285 13 p.

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

  6. Tamás P. Papp, Paul Fearnhead and Chris Sherlock's contribution to the discussion of “the Discussion Meeting on Probabilistic and statistical aspects of machine learning”

    Papp, T. P., Fearnhead, P. & Sherlock, C., 12/04/2024, In: Journal of the Royal Statistical Society: Series B (Statistical Methodology). 86, 2, p. 327-328 2 p.

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

  7. Discussion on “The central role of the identifying assumption in population size estimation” by Serge Aleshin-Guendel, Mauricio Sadinle, and Jon Wakefield

    Whitehead, J., 31/03/2024, In: Biometrics. 80, 1, ujad031.

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

  8. Effects of Allocation Method and Time Trends on Identification of the Best Arm in Multi-arm Trials

    Berry, L. R., Lorenzi, E., Berry, N. S., Crawford, A. M., Jacko, P. & Viele, K., 23/01/2024, In: Statistics in Biopharmaceutical Research. 16, 4, p. 512-525 14 p.

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

  9. Seconder of the vote of thanks and contribution to the Discussion of ‘the Discussion Meeting on Probabilistic and statistical aspects of machine learning’

    Nemeth, C., 2/01/2024, (E-pub ahead of print) In: Journal of the Royal Statistical Society: Series B (Statistical Methodology).

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

  10. Accounting for seasonality in extreme sea-level estimation

    D’Arcy, E., Tawn, J. A., Joly, A. & Sifnioti, D. E., 31/12/2023, In: Annals of Applied Statistics. 17, 4, p. 3500-3525 26 p.

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

  11. Using biomarkers to allocate patients in a response-adaptive clinical trial

    Jackson, H., Bowen, S. & Jaki, T., 2/12/2023, In: Communications in Statistics: Simulation and Computation. 52, 12, p. 5946-5965 20 p.

    Research output: Contribution to Journal/MagazineJournal articlepeer-review

More results »