Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - 87Sr, 119Sn, 127I Single and {1H/19F}-Double Resonance Solid-State NMR Experiments: Application to Inorganic Materials and Nanobuilding Blocks
AU - Laurencin, D.
AU - Ribot, F.
AU - Gervais, C.
AU - Wright, A.J.
AU - Baker, A.R.
AU - Campayo, L.
AU - Hanna, J.V.
AU - Iuga, D.
AU - Smith, M.E.
AU - Nedelec, J.-M.
AU - Renaudin, G.
AU - Bonhomme, C.
PY - 2016/9/16
Y1 - 2016/9/16
N2 - 87Sr, 127I and 119Sn wideline NMR spectroscopy was successfully applied to inorganic and hybrid materials: (i) Sr derivatives of medicinal interest (Sr-malonate, Sr-pyrophosphates, mixed Ca,Sr-fluoroapatites); (ii) apatitic structures acting as host matrices for iodine; and (iii) Sn-derived oxo-clusters which can be used as inorganic nanobuilding blocks. The BRAIN (BRoadband Adiabatic INversion) CP (Cross Polarization) approach (by Schurko et al.) was applied to a non integer quadrupolar nucleus (87Sr, I=9/2). The sequence was used in combination with WURST (Wideband Uniform-Rate Smooth-Truncation) QCPMG (Quadrupolar Carr-Purcell Meiboom-Gill) for optimal sensitivity. We showed that 127I WURST QCPMG experiments were sufficiently sensitive to allow rapid characterization of the incorporation of iodide (I−) anions in lead vanadate/phosphate apatites, and that 127I acted as a sensitive probe for the description of local disorder. 1H/19F → 119Sn BRAIN CP was successfully applied to the detailed characterization of tin oxo-clusters, using 1H and 19F as spin baths. We demonstrated that BRAIN CP can be effectively used as a tool of spectral editing leading to the estimation of spatial proximities between 119Sn and 1H/19F nuclei. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
AB - 87Sr, 127I and 119Sn wideline NMR spectroscopy was successfully applied to inorganic and hybrid materials: (i) Sr derivatives of medicinal interest (Sr-malonate, Sr-pyrophosphates, mixed Ca,Sr-fluoroapatites); (ii) apatitic structures acting as host matrices for iodine; and (iii) Sn-derived oxo-clusters which can be used as inorganic nanobuilding blocks. The BRAIN (BRoadband Adiabatic INversion) CP (Cross Polarization) approach (by Schurko et al.) was applied to a non integer quadrupolar nucleus (87Sr, I=9/2). The sequence was used in combination with WURST (Wideband Uniform-Rate Smooth-Truncation) QCPMG (Quadrupolar Carr-Purcell Meiboom-Gill) for optimal sensitivity. We showed that 127I WURST QCPMG experiments were sufficiently sensitive to allow rapid characterization of the incorporation of iodide (I−) anions in lead vanadate/phosphate apatites, and that 127I acted as a sensitive probe for the description of local disorder. 1H/19F → 119Sn BRAIN CP was successfully applied to the detailed characterization of tin oxo-clusters, using 1H and 19F as spin baths. We demonstrated that BRAIN CP can be effectively used as a tool of spectral editing leading to the estimation of spatial proximities between 119Sn and 1H/19F nuclei. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
KW - BRAIN CP
KW - Iodo/fluoroapatite
KW - Strontium malonate/boronate
KW - Tin oxo-clusters
KW - Wideline NMR (87Sr, 119Sn, 127I)
KW - WURST QCPMG
U2 - 10.1002/slct.201600805
DO - 10.1002/slct.201600805
M3 - Journal article
VL - 1
SP - 4509
EP - 4519
JO - ChemistrySelect
JF - ChemistrySelect
SN - 2365-6549
IS - 15
ER -