Rights statement: This is the peer reviewed version of the following article:V. R. Seymour, S. P. Day, G. Scholz, K. Scheurell, D. Iuga, J. M. Griffin, E. Kemnitz, J. V. Hanna, M. E. Smith, ChemPhysChem 2018, 19, 1722 which has been published in final form at https://onlinelibrary.wiley.com/doi/abs/10.1002/cphc.201800317 This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.
Accepted author manuscript, 1.09 MB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
<mark>Journal publication date</mark> | 17/07/2018 |
---|---|
<mark>Journal</mark> | ChemPhysChem |
Issue number | 14 |
Volume | 19 |
Number of pages | 11 |
Pages (from-to) | 1722-1732 |
Publication Status | Published |
Early online date | 8/05/18 |
<mark>Original language</mark> | English |
Multinuclear (H-1, C-13, Mg-25) solid-state NMR data is reported for a series of magnesium acetate phases Mg(CH3COO)(2)nH(2)O (n=0 (two polymorphs), 1, 4). The central focus here is Mg-25 as this set of compounds provides an expanded range of local magnesium coordinations compared to what has previously been reported in the literature using NMR. These four compounds provide 10 distinct magnesium sites with varying NMR interaction parameters. One of the anhydrous crystal structures () has an MgO7 site which is reported, to the best of our knowledge, for the first time. For those phases with a single crystal structure, a combination of magic angle spinning (MAS) NMR at high magnetic field (20T) and first principles density functional theory (DFT) calculations demonstrates the value of including Mg-25 in NMR crystallography approaches. For the second anhydrate phase (), where no single crystal structure exists, the multinuclear NMR data clearly show the multiplicity of sites for the different elements, with Mg-25 satellite transition (ST) MAS NMR revealing four inequivalent magnesium environments, which is new information constraining future refinement of the structure. This study highlights the sensitivity of Mg-25 NMR to the local environment, an observation important for several sub-disciplines of chemistry where the structural chemistry of magnesium is likely to be crucial.