Home > Research > Publications & Outputs > A computational study of preferential diffusion...

Associated organisational unit

Electronic data

  • Jiang CGD-revised 23Aug2015

    Rights statement: This is the author’s version of a work that was accepted for publication in International Journal of Hydrogen Energy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Hydrogen Energy, 40 (45), 15709-15722 2015 DOI: 10.1016/j.ijhydene.2015.08.112

    Accepted author manuscript, 2.27 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

A computational study of preferential diffusion and scalar transport in nonpremixed hydrogen-air flame

Research output: Contribution to journalJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>7/12/2015
<mark>Journal</mark>International Journal of Hydrogen Energy
Issue number45
Volume40
Number of pages14
Pages (from-to)15709-15722
Publication StatusPublished
Early online date23/10/15
<mark>Original language</mark>English

Abstract

The nonpremixed hydrogen-air reacting flow is simulated using three-dimensional direct numerical simulation coupled with flamelet generated manifolds based on detailed chemical kinetics. From the comparisons between one computational case taking into account preferential diffusion and another case with unity Lewis number assumption, the instantaneous results show that the flow is more vortical in the absence of preferential diffusion. This indicates that preferential diffusion may smooth the flame under certain circumstances when coupled with the intrinsic hydrodynamic instability. The flame compositional structures are also influenced by preferential diffusion in a significant manner. Further, the statistical information suggests that turbulent scalar flux is affected by preferential diffusion. The phenomenon of counter-gradient diffusion of both the conserved and non-conserved scalars can be detected for the two cases. The gradient model for scalar closure is found to be incapable of accurately predicting the scalar transport in nonpremixed hydrogen flames.

Bibliographic note

This is the author’s version of a work that was accepted for publication in International Journal of Hydrogen Energy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Hydrogen Energy, 40 (45), 15709-15722 2015 DOI: 10.1016/j.ijhydene.2015.08.112