Home > Research > Publications & Outputs > A convolution particle filtering approach for t...

Electronic data

View graph of relations

A convolution particle filtering approach for tracking elliptical extended objects

Research output: Contribution to conference - Without ISBN/ISSN Conference paper

Publication date1/07/2013
Number of pages6
<mark>Original language</mark>English
Event16th International Conference on Information Fusion - Istanbul, Turkey
Duration: 9/07/201312/07/2013


Conference16th International Conference on Information Fusion


This paper proposes a convolution particle filtering approach for extended object tracking. Convolution particle filters (CPFs) are likelihood free filters. They are based on convolution kernel probability density representation. They use kernels
to approximate the likelihood of the observations and represent the likelihood when it is analytically untractable or when the observation noise it too small. Hence, the CPFs represent a sub-family of particle filters with improved efficiency in state
estimation of nonlinear dynamic systems. A CPF is designed and implemented for track maintenance of an object with an elliptical shape. The object kinematics and its extent are estimated in the presence of dense clutter. This nonparametric filter is validated with a Poisson model for the measurements, originating from the target and clutter. Simulation examples illustrate the filter performance. It is shown that the CPF yields correct estimates of the joint probability density function of the state variables and unknown static parameters. The results obtained for the extended objects show that the CPFs provides accurate on-line tracking, with satisfactory estimation of the target shape and volume.