Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - A Global Database of Soil Plant Available Phosphorus
AU - McDowell, R. W.
AU - Noble, A.
AU - Pletnyakov, P.
AU - Haygarth, P. M.
PY - 2023/3/7
Y1 - 2023/3/7
N2 - Soil phosphorus drives food production that is needed to feed a growing global population. However, knowledge of plant available phosphorus stocks at a global scale is poor but needed to better match phosphorus fertiliser supply to crop demand. We collated, checked, converted, and filtered a database of c. 575,000 soil samples to c. 33,000 soil samples of soil Olsen phosphorus concentrations. These data represent the most up-to-date repository of freely available data for plant available phosphorus at a global scale. We used these data to derive a model (R2 = 0.54) of topsoil Olsen phosphorus concentrations that when combined with data on bulk density predicted the distribution and global stock of soil Olsen phosphorus. We expect that these data can be used to not only show where plant available P should be boosted, but also where it can be drawn down to make more efficient use of fertiliser phosphorus and to minimise likely phosphorus loss and degradation of water quality.
AB - Soil phosphorus drives food production that is needed to feed a growing global population. However, knowledge of plant available phosphorus stocks at a global scale is poor but needed to better match phosphorus fertiliser supply to crop demand. We collated, checked, converted, and filtered a database of c. 575,000 soil samples to c. 33,000 soil samples of soil Olsen phosphorus concentrations. These data represent the most up-to-date repository of freely available data for plant available phosphorus at a global scale. We used these data to derive a model (R2 = 0.54) of topsoil Olsen phosphorus concentrations that when combined with data on bulk density predicted the distribution and global stock of soil Olsen phosphorus. We expect that these data can be used to not only show where plant available P should be boosted, but also where it can be drawn down to make more efficient use of fertiliser phosphorus and to minimise likely phosphorus loss and degradation of water quality.
KW - Data Descriptor
KW - /706/1143
KW - /704/47/4112
KW - /704/172/4081
KW - data-descriptor
U2 - 10.1038/s41597-023-02022-4
DO - 10.1038/s41597-023-02022-4
M3 - Journal article
VL - 10
JO - Scientific Data
JF - Scientific Data
SN - 2052-4463
IS - 1
ER -