Rights statement: This is the author’s version of a work that was accepted for publication in Computers and Operations Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers and Operations Research, 130, 2021 DOI: 10.1016/j.cor.2021.105221
Accepted author manuscript, 419 KB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - A hyper-heuristic approach based upon a hidden Markov model for the multi-stage nurse rostering problem
AU - Kheiri, Ahmed
AU - Gretsista, Angeliki
AU - Keedwell, Ed
AU - Lulli, Guglielmo
AU - Epitropakis, Michael
AU - Burke, Edmund
N1 - This is the author’s version of a work that was accepted for publication in Computers and Operations Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers and Operations Research, 130, 2021 DOI: 10.1016/j.cor.2021.105221
PY - 2021/6/1
Y1 - 2021/6/1
N2 - The nurse rostering problem is a very important problem to address. Due to the importance of nurses’ jobs, it is vital that all the nurses in a hospital are assigned to the most appropriate shifts and days so as to meet the demands of the hospital as well as to satisfy the requirements and requests of the nurses as much as possible. Nurse rostering is a computationally hard and challenging combinatorial optimisation problem. To solve it, general and efficient methodologies such as selection hyper-heuristics have emerged. To address the multi-stage nurse rostering formulation, posed by the second international nurse rostering competition’s problem, a sequence-based selection hyper-heuristic that utilises a statistical Markov model is developed. The proposed algorithm incorporates a dedicated algorithm for building feasible initial solutions and a series of low-level heuristics with different dynamics that respect the characteristics of the competition’s problem formulation. Empirical results and analysis suggest that the proposed approach has a significant potential on difficult problem instances.
AB - The nurse rostering problem is a very important problem to address. Due to the importance of nurses’ jobs, it is vital that all the nurses in a hospital are assigned to the most appropriate shifts and days so as to meet the demands of the hospital as well as to satisfy the requirements and requests of the nurses as much as possible. Nurse rostering is a computationally hard and challenging combinatorial optimisation problem. To solve it, general and efficient methodologies such as selection hyper-heuristics have emerged. To address the multi-stage nurse rostering formulation, posed by the second international nurse rostering competition’s problem, a sequence-based selection hyper-heuristic that utilises a statistical Markov model is developed. The proposed algorithm incorporates a dedicated algorithm for building feasible initial solutions and a series of low-level heuristics with different dynamics that respect the characteristics of the competition’s problem formulation. Empirical results and analysis suggest that the proposed approach has a significant potential on difficult problem instances.
KW - Hyper-heuristic
KW - Optimisation
KW - Healthcare
KW - Scheduling
U2 - 10.1016/j.cor.2021.105221
DO - 10.1016/j.cor.2021.105221
M3 - Journal article
VL - 130
JO - Computers and Operations Research
JF - Computers and Operations Research
SN - 0305-0548
M1 - 105221
ER -