Home > Research > Publications & Outputs > A Modular Multilevel-Based High-Voltage Pulse G...

Electronic data

  • Elgenedy_etal_IEEETPS2016_modular_multilevel_based_high_voltage_pulse_generator_for_water_disinfection

    Rights statement: ©2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

    Accepted author manuscript, 1.44 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

A Modular Multilevel-Based High-Voltage Pulse Generator for Water Disinfection Applications

Research output: Contribution to journalJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>1/11/2016
<mark>Journal</mark>IEEE Transactions on Plasma Science
Issue number11
Volume44
Number of pages8
Pages (from-to)2893-2900
Publication StatusPublished
Early online date28/09/16
<mark>Original language</mark>English

Abstract

The role of irreversible electroporation using pulsed electric field is to generate high-voltage (HV) pulses with a predefined magnitude and duration. These HV pulses are applied to the treatment chamber until decontamination of the sample is completed. In this paper, a new topology for HV rectangular pulse generation for water disinfection applications is introduced. The proposed topology has four arms comprised of series-connected half bridge modular multilevel converter cells. The rectangular pulse characteristics can be controlled via the software controller without any physical changes in power topology. The converter is capable of generating both bipolar and monopolar HV pulses with microsecond pulse durations at high a frequency rate with different characteristics. Hence, the proposed topology provides flexibility by software control, along with hardware modularity, scalability, and redundancy. Moreover, a cell's capacitance is relatively small, which drastically reduces the converter footprint. The adopted charging and discharging process of the cell capacitors in this topology eliminate the need of any voltage measurements or complex control for cell-capacitors voltage balance. Consequently, continuity of converter operation is assured under cell malfunction. In this paper, analysis and cell-capacitor sizing of the proposed topology are detailed. Converter operation is verified using MATLAB/Simulink simulation and scaled experimentation.

Bibliographic note

©2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.