Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - A Multi-Dimensional Analysis of English Tweets
AU - Clarke, Isobelle
PY - 2022/5/1
Y1 - 2022/5/1
N2 - This paper applies Multi-Dimensional Analysis (MDA) to a corpus of English tweets to uncover the most common patterns of linguistic variation. MDA is a commonly applied method in corpus linguistics for the analysis of functional and/or stylistic variation in a particular language variety. Notably, MDA is an approach aimed at identifying and interpreting the frequent patterns of co-occurring linguistic features across a corpus, such as a corpus of spoken and written English registers (Biber, 1988). Traditionally, MDA is based on a factor analysis of the relative frequencies of numerous grammatical features measured across numerous texts drawn from that variety of language to identify a series of underlying dimensions of linguistic variation. Despite its popularity and utility, traditional MDA has an important limitation – it can only be used to analyse texts that are long enough to allow for the relative frequencies of many grammatical forms to be estimated accurately. If the texts under analysis are too short, then few forms can be expected to occur sufficiently frequently for their relative frequency to be accurately estimated. Tweets are characteristically short texts, meaning that traditional MDA cannot be used in the present research. To overcome this problem, this paper introduces a short-text version of MDA and applies it to a corpus of English tweets. Specifically, rather than measure the relative frequencies of forms in each tweet, the approach analyses their occurrence. This binary dataset is then aggregated using Multiple Correspondence Analysis (MCA), which is used much like factor analysis in traditional MDA – to return a series of dimensions that represent the most common patterns of linguistic variation in the dataset. After controlling for text length in the first dimension, four subsequent dimensions are interpreted. The results suggest that there is a great deal of linguistic variation on Twitter. Notably, the results show that Twitter is commonly used for self-commodification, as people manage their identities, engaging in practices of self-branding through stance-taking, self-reporting, promotion and persuasion, as well as broadcasting their message beyond their followership, distributing news, and expressing opposition and this often occurs in order to attract attention. Additionally, the results show that interaction is common, suggesting that Twitter is also used for social and interpersonal gain.
AB - This paper applies Multi-Dimensional Analysis (MDA) to a corpus of English tweets to uncover the most common patterns of linguistic variation. MDA is a commonly applied method in corpus linguistics for the analysis of functional and/or stylistic variation in a particular language variety. Notably, MDA is an approach aimed at identifying and interpreting the frequent patterns of co-occurring linguistic features across a corpus, such as a corpus of spoken and written English registers (Biber, 1988). Traditionally, MDA is based on a factor analysis of the relative frequencies of numerous grammatical features measured across numerous texts drawn from that variety of language to identify a series of underlying dimensions of linguistic variation. Despite its popularity and utility, traditional MDA has an important limitation – it can only be used to analyse texts that are long enough to allow for the relative frequencies of many grammatical forms to be estimated accurately. If the texts under analysis are too short, then few forms can be expected to occur sufficiently frequently for their relative frequency to be accurately estimated. Tweets are characteristically short texts, meaning that traditional MDA cannot be used in the present research. To overcome this problem, this paper introduces a short-text version of MDA and applies it to a corpus of English tweets. Specifically, rather than measure the relative frequencies of forms in each tweet, the approach analyses their occurrence. This binary dataset is then aggregated using Multiple Correspondence Analysis (MCA), which is used much like factor analysis in traditional MDA – to return a series of dimensions that represent the most common patterns of linguistic variation in the dataset. After controlling for text length in the first dimension, four subsequent dimensions are interpreted. The results suggest that there is a great deal of linguistic variation on Twitter. Notably, the results show that Twitter is commonly used for self-commodification, as people manage their identities, engaging in practices of self-branding through stance-taking, self-reporting, promotion and persuasion, as well as broadcasting their message beyond their followership, distributing news, and expressing opposition and this often occurs in order to attract attention. Additionally, the results show that interaction is common, suggesting that Twitter is also used for social and interpersonal gain.
KW - Corpus linguistics
KW - functional linguistic variation
KW - multiple correspondence analysis
KW - multidimensional anlaysis
KW - stylistic variation
KW - twitter
U2 - 10.1177/09639470221090369
DO - 10.1177/09639470221090369
M3 - Journal article
VL - 31
SP - 124
EP - 149
JO - Language and Literature
JF - Language and Literature
SN - 0963-9470
IS - 2
ER -