Home > Research > Publications & Outputs > A multiple-point spatially weighted k-NN method...

Electronic data

  • AAM_JAG

    Rights statement: This is the author’s version of a work that was accepted for publication in International Journal of Applied Earth Observation and Geoinformation. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Applied Earth Observation and Geoinformation, 52, 2016 DOI: 10.1016/j.jag.2016.06.017

    Accepted author manuscript, 3.34 MB, PDF document

    Available under license: CC BY-NC-ND

Links

Text available via DOI:

View graph of relations

A multiple-point spatially weighted k-NN method for object-based classification

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>10/2016
<mark>Journal</mark>International Journal of Applied Earth Observation and Geoinformation
Volume52
Number of pages12
Pages (from-to)263-274
Publication StatusPublished
Early online date9/07/16
<mark>Original language</mark>English

Abstract

Object-based classification, commonly referred to as object-based image analysis (OBIA), is now commonly regarded as able to produce more appealing classification maps, often of greater accuracy, than pixel-based classification and its application is now widespread. Therefore, improvement of OBIA using spatial techniques is of great interest. In this paper, multiple-point statistics (MPS) is proposed for object-based classification enhancement in the form of a new multiple-point k-nearest neighbour (k-NN) classification method (MPk-NN). The proposed method first utilises a training image derived from a pre-classified map to characterise the spatial correlation between multiple points of land cover classes. The MPS borrows spatial structures from other parts of the training image, and then incorporates this spatial information, in the form of multiple-point probabilities, into the k-NN classifier. Two satellite sensor images with a fine spatial resolution were selected to evaluate the new method. One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 image of the Wolong mountainous area, in China. The images were object-based classified using the MPk-NN method and several alternatives, including the k-NN, the geostatistically weighted k-NN, the Bayesian method, the decision tree classifier (DTC), and the support vector machine classifier (SVM). It was demonstrated that the new spatial weighting based on MPS can achieve greater classification accuracy relative to the alternatives and it is, thus, recommended as appropriate for object-based classification.

Bibliographic note

This is the author’s version of a work that was accepted for publication in International Journal of Applied Earth Observation and Geoinformation. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Applied Earth Observation and Geoinformation, 52, 2016 DOI: 10.1016/j.jag.2016.06.017