Home > Research > Publications & Outputs > A new mechanism for caldera formation resulting...

Associated organisational unit

Electronic data

Links

View graph of relations

A new mechanism for caldera formation resulting from interactions between magmatic heat and cryospheric ice.

Research output: Contribution to conference - Without ISBN/ISSN Conference paper

Published
Publication date2009
Number of pages2
<mark>Original language</mark>English
Event40th Lunar and Planetary Science Conference - Woodlands, Texas, United States
Duration: 23/03/200927/03/2009

Conference

Conference40th Lunar and Planetary Science Conference
Country/TerritoryUnited States
CityWoodlands, Texas
Period23/03/0927/03/09

Abstract

It is generally accepted that volcanic caldera formation takes place when supporting material is removed from below. There is much field and laboratory evidence to suggest that this material is removed via magma loss from a shallow reservoir to feed an eruption or intrusion (e.g. [1, 2 and 3]). There is nothing to suggest however that the supporting material must be magma.

Calculations show that if the ice held within a cryosphere were melted, by a hot magmatic intrusion, compaction of the remaining rock could take place and cause collapse of a coherent overlying block, analogous to conventional caldera collapse. Furthermore this process is likely to occur at a variety of smaller scales in a similar fashion to kettle-hole formation on Earth.

Hecates Tholus, Mars (31.73° N 150° E) has many pits, channels and depressions of ambiguous origin in addition to well-studied fluvial channels (Fig 1). We explore the hypothesis that many of these features were formed by this ice-melting mechanism and that such melting could have influenced the formation of one or more of the calderas themselves.