Home > Research > Publications & Outputs > A Plinian treatment of fallout from Hawaiian la...
View graph of relations

A Plinian treatment of fallout from Hawaiian lava fountains.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
<mark>Journal publication date</mark>01/1999
<mark>Journal</mark>Journal of Volcanology and Geothermal Research
Issue number1-2
Volume88
Number of pages9
Pages (from-to)67-75
Publication StatusPublished
<mark>Original language</mark>English

Abstract

A new model is presented which simulates the dispersal and deposition of material from a Hawaiian eruption column. The model treats the Hawaiian column as a coarse-grained Plinian column and uses a modified version of the Wilson and Walker [Wilson, L., Walker, G.P.L., 1987. Explosive volcanic eruptions: VI. Ejecta dispersal in Plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys. J. R. Astron. Soc. 89, 657–679.] Plinian pyroclast dispersal model to simulate the fall out of material during a Hawaiian eruption. The model results are found to be in good agreement with independent estimates of various parameters made for the 1959 Kilauea Iki eruption of Kilauea volcano. The close agreement between the model results and these independent estimates shows that, dynamically, Hawaiian eruptions are indistinguishable from Plinian eruptions. The major differences in the styles and deposits of these two types of eruptions are accounted for by differences in the mass fluxes and gas contents of the erupting magmas and, most fundamentally, by differences in the grainsize distribution of the erupted clasts. Plume heights predicted by the model are greater than those found for previous models of Hawaiian eruptions. This is because previous models did not allow for the progressive fall out of particles from the plume and, more importantly, made no correction for the velocity disequilibrium between gas and clasts when the grainsize distribution is coarse.