Rights statement: ©2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Accepted author manuscript, 226 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - A Tractable Approach to Base Station Sleep Mode Power Consumption and Deactivation Latency
AU - Onireti, Oluwakayode
AU - Mohamed, Abdelrahim
AU - Pervaiz, Haris
AU - Imran, Muhammad
N1 - ©2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PY - 2018/9/9
Y1 - 2018/9/9
N2 - We consider an idealistic scenario where the vacation (no-load) period of a typical base station (BS) is known in advance such that its vacation time can be matched with a sleep depth. The latter is the sum of the deactivation latency, actual sleep period and reactivation latency. Noting that the power consumed during the actual sleep period is a function of the deactivation latency, we derive an accurate closed-form expression for the optimal deactivation latency for deterministic BS vacation time. Further, using this expression, we derive the optimal average power consumption for the case where the vacation time follows a known distribution. Numerical results show that significant power consumption savings can be achieved in the sleep mode by selecting the optimal deactivation latency for each vacation period. Furthermore, our results also show that deactivating the BS hardware is sub-optimal for BS vacation less than a particular threshold value.
AB - We consider an idealistic scenario where the vacation (no-load) period of a typical base station (BS) is known in advance such that its vacation time can be matched with a sleep depth. The latter is the sum of the deactivation latency, actual sleep period and reactivation latency. Noting that the power consumed during the actual sleep period is a function of the deactivation latency, we derive an accurate closed-form expression for the optimal deactivation latency for deterministic BS vacation time. Further, using this expression, we derive the optimal average power consumption for the case where the vacation time follows a known distribution. Numerical results show that significant power consumption savings can be achieved in the sleep mode by selecting the optimal deactivation latency for each vacation period. Furthermore, our results also show that deactivating the BS hardware is sub-optimal for BS vacation less than a particular threshold value.
U2 - 10.1109/PIMRC.2018.8580896
DO - 10.1109/PIMRC.2018.8580896
M3 - Conference contribution/Paper
AN - SCOPUS:85060544420
SP - 123
EP - 128
BT - 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 29th IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2018
Y2 - 9 September 2018 through 12 September 2018
ER -