Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - A verified algorithm enumerating event structures
AU - Bowles, Juliana
AU - Caminati, Marco B.
PY - 2017/6/28
Y1 - 2017/6/28
N2 - An event structure is a mathematical abstraction modeling concepts as causality, conflict and concurrency between events. While many other mathematical structures, including groups, topological spaces, rings, abound with algorithms and formulas to generate, enumerate and count particular sets of their members, no algorithm or formulas are known to generate or count all the possible event structures over af inite set of events. We present an algorithm to generate such a family, along with a functional implementation verified using Isabelle/HOL. As byproducts, we obtain a verified enumeration of all possible preorders and partial orders. While the integer sequences counting preorders and partial orders are already listed on OEIS (On-line Encyclopedia of Integer Sequences), the one counting event structures is not. We therefore used our algorithm to submit a formally verified addition, which has been successfully reviewed and is now part of the OEIS.
AB - An event structure is a mathematical abstraction modeling concepts as causality, conflict and concurrency between events. While many other mathematical structures, including groups, topological spaces, rings, abound with algorithms and formulas to generate, enumerate and count particular sets of their members, no algorithm or formulas are known to generate or count all the possible event structures over af inite set of events. We present an algorithm to generate such a family, along with a functional implementation verified using Isabelle/HOL. As byproducts, we obtain a verified enumeration of all possible preorders and partial orders. While the integer sequences counting preorders and partial orders are already listed on OEIS (On-line Encyclopedia of Integer Sequences), the one counting event structures is not. We therefore used our algorithm to submit a formally verified addition, which has been successfully reviewed and is now part of the OEIS.
U2 - 10.1007/978-3-319-62075-6_17
DO - 10.1007/978-3-319-62075-6_17
M3 - Conference contribution/Paper
SN - 9783319620749
SN - 9783319620756
VL - 10383
BT - Intelligent Computer Mathematics
PB - Springer
ER -