Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Accelerometer-based transportation mode detection on smartphones
AU - Hemminki, Samuli
AU - Nurmi, Petteri Tapio
AU - Tarkoma, Sasu
PY - 2013/11
Y1 - 2013/11
N2 - We present novel accelerometer-based techniques for accurate and fine-grained detection of transportation modes on smartphones. The primary contributions of our work are an improved algorithm for estimating the gravity component of accelerometer measurements, a novel set of accelerometer features that are able to capture key characteristics of vehicular movement patterns, and a hierarchical decomposition of the detection task. We evaluate our approach using over 150 hours of transportation data, which has been collected from 4 different countries and 16 individuals. Results of the evaluation demonstrate that our approach is able to improve transportation mode detection by over 20% compared to current accelerometer-based systems, while at the same time improving generalization and robustness of the detection. The main performance improvements are obtained for motorised transportation modalities, which currently represent the main challenge for smartphone-based transportation mode detection.
AB - We present novel accelerometer-based techniques for accurate and fine-grained detection of transportation modes on smartphones. The primary contributions of our work are an improved algorithm for estimating the gravity component of accelerometer measurements, a novel set of accelerometer features that are able to capture key characteristics of vehicular movement patterns, and a hierarchical decomposition of the detection task. We evaluate our approach using over 150 hours of transportation data, which has been collected from 4 different countries and 16 individuals. Results of the evaluation demonstrate that our approach is able to improve transportation mode detection by over 20% compared to current accelerometer-based systems, while at the same time improving generalization and robustness of the detection. The main performance improvements are obtained for motorised transportation modalities, which currently represent the main challenge for smartphone-based transportation mode detection.
U2 - 10.1145/2517351.2517367
DO - 10.1145/2517351.2517367
M3 - Conference contribution/Paper
SN - 9781450320276
BT - SenSys '13 Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems
PB - Association for Computing Machinery (ACM)
CY - New York
ER -