Home > Research > Publications & Outputs > Advanced modelling of adaptive bitrate selection

Electronic data

  • 2017saniphd

    Final published version, 2.3 MB, PDF document

    Available under license: CC BY: Creative Commons Attribution 4.0 International License

Text available via DOI:

View graph of relations

Advanced modelling of adaptive bitrate selection

Research output: ThesisDoctoral Thesis

Published

Standard

Advanced modelling of adaptive bitrate selection. / Sani, Yusuf.

Lancaster University, 2017. 171 p.

Research output: ThesisDoctoral Thesis

Harvard

APA

Sani, Y. (2017). Advanced modelling of adaptive bitrate selection. [Doctoral Thesis, Lancaster University]. Lancaster University. https://doi.org/10.17635/lancaster/thesis/139

Vancouver

Sani Y. Advanced modelling of adaptive bitrate selection. Lancaster University, 2017. 171 p. doi: 10.17635/lancaster/thesis/139

Author

Sani, Yusuf. / Advanced modelling of adaptive bitrate selection. Lancaster University, 2017. 171 p.

Bibtex

@phdthesis{77959db6661747b58ddc77bf877978ac,
title = "Advanced modelling of adaptive bitrate selection",
abstract = "Nowadays, a typical video content provider serves a variety of platforms e.g. smartphones, web browsers, and smart TVs. Each of these platforms has specific requirements with respect to transmission and video quality. Moreover, since these devices are increasingly being used on-the-go, the environment within which most of these video streaming clients operate is both unreliable and time-varying. To cater for these heterogeneous requirements, content providers are increasingly adopting adaptive streaming services. Through such services, the quality of the video content received by a user is adapted to fit its specific requirements and capabilities. To adapt the video quality, system capabilities such as network capacity and memory have to be continuously monitored and measured, chunk requests have to be scheduled, and then the optimal video rate has to be decided. Each of these tasks is usually managed by a sub-module of the adaptive bitrate selection function. However, these sub-components interact in a non-trivial manner. For example, while on-off chunk scheduling helps to prevent buffer overflow, it negatively affects the TCP throughput. Hence, these complex interactions between these different sub-components of the adaptive streaming algorithm result in unnecessary rebufferings, undesirable variability, and sub-optimal video quality. To help simplify these interactions, this thesis develops several frameworks and models that define the relationships between the various components of the adaptive bitrate selection system. This includes deriving the valid system state space, which defines the state that an algorithm can be in at any given time, determining the allowable interactions between the various components, and identifying the video quality evolution rules that optimise QoE. Using this information, some state-of-the-art algorithms are improved and novel ones developed to demonstrate the effectiveness of the proposed approach. The result of extensive evaluations conducted both within a real-world Internet environment and with network trace shows the proposed schemes help in reducing the convergence time, startup delay, and rebuffering events, while at the same time increasing both the average and the stability of the video quality. All this is obtained without any adverse impact on the fairness among the competing players. ",
keywords = "Adaptive Streaming , multimedia communication, video streaming ",
author = "Yusuf Sani",
year = "2017",
doi = "10.17635/lancaster/thesis/139",
language = "English",
publisher = "Lancaster University",
school = "Lancaster University",

}

RIS

TY - THES

T1 - Advanced modelling of adaptive bitrate selection

AU - Sani, Yusuf

PY - 2017

Y1 - 2017

N2 - Nowadays, a typical video content provider serves a variety of platforms e.g. smartphones, web browsers, and smart TVs. Each of these platforms has specific requirements with respect to transmission and video quality. Moreover, since these devices are increasingly being used on-the-go, the environment within which most of these video streaming clients operate is both unreliable and time-varying. To cater for these heterogeneous requirements, content providers are increasingly adopting adaptive streaming services. Through such services, the quality of the video content received by a user is adapted to fit its specific requirements and capabilities. To adapt the video quality, system capabilities such as network capacity and memory have to be continuously monitored and measured, chunk requests have to be scheduled, and then the optimal video rate has to be decided. Each of these tasks is usually managed by a sub-module of the adaptive bitrate selection function. However, these sub-components interact in a non-trivial manner. For example, while on-off chunk scheduling helps to prevent buffer overflow, it negatively affects the TCP throughput. Hence, these complex interactions between these different sub-components of the adaptive streaming algorithm result in unnecessary rebufferings, undesirable variability, and sub-optimal video quality. To help simplify these interactions, this thesis develops several frameworks and models that define the relationships between the various components of the adaptive bitrate selection system. This includes deriving the valid system state space, which defines the state that an algorithm can be in at any given time, determining the allowable interactions between the various components, and identifying the video quality evolution rules that optimise QoE. Using this information, some state-of-the-art algorithms are improved and novel ones developed to demonstrate the effectiveness of the proposed approach. The result of extensive evaluations conducted both within a real-world Internet environment and with network trace shows the proposed schemes help in reducing the convergence time, startup delay, and rebuffering events, while at the same time increasing both the average and the stability of the video quality. All this is obtained without any adverse impact on the fairness among the competing players.

AB - Nowadays, a typical video content provider serves a variety of platforms e.g. smartphones, web browsers, and smart TVs. Each of these platforms has specific requirements with respect to transmission and video quality. Moreover, since these devices are increasingly being used on-the-go, the environment within which most of these video streaming clients operate is both unreliable and time-varying. To cater for these heterogeneous requirements, content providers are increasingly adopting adaptive streaming services. Through such services, the quality of the video content received by a user is adapted to fit its specific requirements and capabilities. To adapt the video quality, system capabilities such as network capacity and memory have to be continuously monitored and measured, chunk requests have to be scheduled, and then the optimal video rate has to be decided. Each of these tasks is usually managed by a sub-module of the adaptive bitrate selection function. However, these sub-components interact in a non-trivial manner. For example, while on-off chunk scheduling helps to prevent buffer overflow, it negatively affects the TCP throughput. Hence, these complex interactions between these different sub-components of the adaptive streaming algorithm result in unnecessary rebufferings, undesirable variability, and sub-optimal video quality. To help simplify these interactions, this thesis develops several frameworks and models that define the relationships between the various components of the adaptive bitrate selection system. This includes deriving the valid system state space, which defines the state that an algorithm can be in at any given time, determining the allowable interactions between the various components, and identifying the video quality evolution rules that optimise QoE. Using this information, some state-of-the-art algorithms are improved and novel ones developed to demonstrate the effectiveness of the proposed approach. The result of extensive evaluations conducted both within a real-world Internet environment and with network trace shows the proposed schemes help in reducing the convergence time, startup delay, and rebuffering events, while at the same time increasing both the average and the stability of the video quality. All this is obtained without any adverse impact on the fairness among the competing players.

KW - Adaptive Streaming

KW - multimedia communication

KW - video streaming

U2 - 10.17635/lancaster/thesis/139

DO - 10.17635/lancaster/thesis/139

M3 - Doctoral Thesis

PB - Lancaster University

ER -