Final published version
Licence: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - An easily-synthesized low carbon ionic liquid functionalized metal-organic framework composite material to remove Congo red from water
AU - Li, H.
AU - Fei, J.
AU - Chen, S.
AU - Jones, K.C.
AU - Li, S.
AU - Chen, W.
AU - Liang, Y.
PY - 2023/6/30
Y1 - 2023/6/30
N2 - Congo red (CR) is documented as a typical azo dye compound that is widely used for industrial activities such as papermaking, textiles, leather and additives production, making it a main component of COD contaminants in industrial wastewaters. Excessive releases of CR have resulted in adverse impacts on water environments and ecological systems due to its non-biodegradable, toxic and carcinogenic properties. Therefore, the removal of CR from water environments is of important for wastewater treatment. Previous studies have proved that metal-organic frameworks (MOFs) were feasible for CR adsorption, but less stable in water environments. Several functionalized materials have therefore been used to produce MOF-derived composite material for better performance. To simplify the synthesis processes and reduce the energy consumption, an ionic liquid (IL) was used in this study for the synthesis of [BMIM][PF6]/ZIF-8 (BP/Z) composite material. The morphological structure of this material remained stable after the incorporation of IL. The equilibrium time of CR adsorption was 90 min with a maximum adsorption capacity of 1463 mg/g. Isotherm and kinetic studies revealed that the adsorption process was better described by Langmuir and pseudo-second-order model. Our results also presented that the IL/MOF composite material can be used within pH 5 and 6 with the presence of Na+, K+, Mg2+, Ca2+, Cl− and SO42−. It was also proved that the novel IL/MOF composites in this study have great potential to adsorb and remove organic dyes from water.
AB - Congo red (CR) is documented as a typical azo dye compound that is widely used for industrial activities such as papermaking, textiles, leather and additives production, making it a main component of COD contaminants in industrial wastewaters. Excessive releases of CR have resulted in adverse impacts on water environments and ecological systems due to its non-biodegradable, toxic and carcinogenic properties. Therefore, the removal of CR from water environments is of important for wastewater treatment. Previous studies have proved that metal-organic frameworks (MOFs) were feasible for CR adsorption, but less stable in water environments. Several functionalized materials have therefore been used to produce MOF-derived composite material for better performance. To simplify the synthesis processes and reduce the energy consumption, an ionic liquid (IL) was used in this study for the synthesis of [BMIM][PF6]/ZIF-8 (BP/Z) composite material. The morphological structure of this material remained stable after the incorporation of IL. The equilibrium time of CR adsorption was 90 min with a maximum adsorption capacity of 1463 mg/g. Isotherm and kinetic studies revealed that the adsorption process was better described by Langmuir and pseudo-second-order model. Our results also presented that the IL/MOF composite material can be used within pH 5 and 6 with the presence of Na+, K+, Mg2+, Ca2+, Cl− and SO42−. It was also proved that the novel IL/MOF composites in this study have great potential to adsorb and remove organic dyes from water.
KW - Ionic liquid
KW - Metal-organic framework
KW - Organic dye
KW - Adsorbent
KW - Organic contamination remediation
U2 - 10.1016/j.watcyc.2023.05.004
DO - 10.1016/j.watcyc.2023.05.004
M3 - Journal article
VL - 4
SP - 127
EP - 134
JO - Water Cycle
JF - Water Cycle
ER -