Rights statement: ©2020 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Accepted author manuscript, 294 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - An Evolutionary-Based Algorithm for Smart-Living Applications Placement in Fog Networks
AU - Moallemi, Raheleh
AU - Bozorgchenani, Arash
AU - Tarchi, Daniele
N1 - ©2020 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PY - 2020/3/5
Y1 - 2020/3/5
N2 - Fog computing is an emerging model, complementing the cloud computing platform, introduced to support the Internet of Things (IoT) processing requests at the edge of the network. Smart-living IoT scenarios require the execution of multiple processing tasks at the edge of the network and leveraging on the Fog Computing approach results to be a worthwhile solution. Genetic Algorithms (GA) are a heuristic search and optimization class of techniques inspired by natural evolution. We propose two GA-based approaches for optimizing the processing task placement in a fog computing edge infrastructure aiming to support the Smart-living IoT nodes requests. The numerical results obtained in Matlab show that both GA-based approaches allow to maximize the covered areas while minimizing the resource wastage through the minimization of the overlapping areas
AB - Fog computing is an emerging model, complementing the cloud computing platform, introduced to support the Internet of Things (IoT) processing requests at the edge of the network. Smart-living IoT scenarios require the execution of multiple processing tasks at the edge of the network and leveraging on the Fog Computing approach results to be a worthwhile solution. Genetic Algorithms (GA) are a heuristic search and optimization class of techniques inspired by natural evolution. We propose two GA-based approaches for optimizing the processing task placement in a fog computing edge infrastructure aiming to support the Smart-living IoT nodes requests. The numerical results obtained in Matlab show that both GA-based approaches allow to maximize the covered areas while minimizing the resource wastage through the minimization of the overlapping areas
U2 - 10.1109/GCWkshps45667.2019.9024660
DO - 10.1109/GCWkshps45667.2019.9024660
M3 - Conference contribution/Paper
SN - 9781728109619
BT - 2019 IEEE Globecom Workshops (GC Wkshps)
PB - IEEE Publishing
ER -