Home > Research > Publications & Outputs > An improved locator identifier split architectu...

Electronic data

  • 2017musabphd

    Final published version, 5.99 MB, PDF document

    Available under license: CC BY-ND: Creative Commons Attribution-NoDerivatives 4.0 International License

Text available via DOI:

View graph of relations

An improved locator identifier split architecture (ILISA) to enhance mobility

Research output: ThesisDoctoral Thesis

Published

Standard

An improved locator identifier split architecture (ILISA) to enhance mobility. / Isah, Musab.
Lancaster University, 2017. 224 p.

Research output: ThesisDoctoral Thesis

Harvard

APA

Vancouver

Isah M. An improved locator identifier split architecture (ILISA) to enhance mobility. Lancaster University, 2017. 224 p. doi: 10.17635/lancaster/thesis/135

Author

Bibtex

@phdthesis{18dd311d65094c5e9435c9a37aa7221d,
title = "An improved locator identifier split architecture (ILISA) to enhance mobility",
abstract = "The increased use of mobile devices has prompted the need for efficient mobility management protocols to ensure continuity of communication sessions as users switch connection between available wireless access networks in an area. Locator/Identifier (LOC/ID) split architectures are designed to, among other functions, enable the mobility of nodes on the Internet. The protocols based on these architectures enable mobility by ensuring that the identifier (IP address) used for creating a communication session is maintained throughout the lifetime of the session and only the location of a mobile node (MN) is updated as the device moves.While the LOC/ID protocols ensure session continuity during handover, they experience packet loss and long service disruption times as the MN moves from one access network to another. The mobility event causes degradation of throughput, poor network utilisation, and affects the stability of some applications, such as video players. This poor performance was confirmed from the experiments we conducted on a laboratory testbed running Locator Identifier Separation Protocol MN (LISP-MN) and Mobile IPv6 (MIPv6). The MIPv6, as the standardised IETF mobility protocol, was used to benchmark the performance of LISP-MN. The poor performance recorded is owed to the design of the LISP-MN{\textquoteright}s architecture, with no specific way of handling packets that arrive during handover events.Our main aim in this thesis is to introduce an Improved Locator/Identifier Split Architecture (ILISA) designed to enhance the mobility of nodes running a LOC/ID protocol by mitigating packet loss and reducing service disruption in handovers. A new network node, Loc-server, is central to the new architecture with the task of buffering incoming packets during handover and forwarding the packets to the MN on the completion of the node{\textquoteright}s movement process. We implemented ILISA with LISP-MN on a laboratory testbed to evaluate its performance in different mobility scenarios. Our experimental results show a significant improvement in the mobility performance of MNs as reflected by the different network parameters investigated.",
keywords = "Loc/ID split, LISP-MN, Mobility, Network Architecture, Handover",
author = "Musab Isah",
year = "2017",
doi = "10.17635/lancaster/thesis/135",
language = "English",
publisher = "Lancaster University",
school = "Lancaster University",

}

RIS

TY - BOOK

T1 - An improved locator identifier split architecture (ILISA) to enhance mobility

AU - Isah, Musab

PY - 2017

Y1 - 2017

N2 - The increased use of mobile devices has prompted the need for efficient mobility management protocols to ensure continuity of communication sessions as users switch connection between available wireless access networks in an area. Locator/Identifier (LOC/ID) split architectures are designed to, among other functions, enable the mobility of nodes on the Internet. The protocols based on these architectures enable mobility by ensuring that the identifier (IP address) used for creating a communication session is maintained throughout the lifetime of the session and only the location of a mobile node (MN) is updated as the device moves.While the LOC/ID protocols ensure session continuity during handover, they experience packet loss and long service disruption times as the MN moves from one access network to another. The mobility event causes degradation of throughput, poor network utilisation, and affects the stability of some applications, such as video players. This poor performance was confirmed from the experiments we conducted on a laboratory testbed running Locator Identifier Separation Protocol MN (LISP-MN) and Mobile IPv6 (MIPv6). The MIPv6, as the standardised IETF mobility protocol, was used to benchmark the performance of LISP-MN. The poor performance recorded is owed to the design of the LISP-MN’s architecture, with no specific way of handling packets that arrive during handover events.Our main aim in this thesis is to introduce an Improved Locator/Identifier Split Architecture (ILISA) designed to enhance the mobility of nodes running a LOC/ID protocol by mitigating packet loss and reducing service disruption in handovers. A new network node, Loc-server, is central to the new architecture with the task of buffering incoming packets during handover and forwarding the packets to the MN on the completion of the node’s movement process. We implemented ILISA with LISP-MN on a laboratory testbed to evaluate its performance in different mobility scenarios. Our experimental results show a significant improvement in the mobility performance of MNs as reflected by the different network parameters investigated.

AB - The increased use of mobile devices has prompted the need for efficient mobility management protocols to ensure continuity of communication sessions as users switch connection between available wireless access networks in an area. Locator/Identifier (LOC/ID) split architectures are designed to, among other functions, enable the mobility of nodes on the Internet. The protocols based on these architectures enable mobility by ensuring that the identifier (IP address) used for creating a communication session is maintained throughout the lifetime of the session and only the location of a mobile node (MN) is updated as the device moves.While the LOC/ID protocols ensure session continuity during handover, they experience packet loss and long service disruption times as the MN moves from one access network to another. The mobility event causes degradation of throughput, poor network utilisation, and affects the stability of some applications, such as video players. This poor performance was confirmed from the experiments we conducted on a laboratory testbed running Locator Identifier Separation Protocol MN (LISP-MN) and Mobile IPv6 (MIPv6). The MIPv6, as the standardised IETF mobility protocol, was used to benchmark the performance of LISP-MN. The poor performance recorded is owed to the design of the LISP-MN’s architecture, with no specific way of handling packets that arrive during handover events.Our main aim in this thesis is to introduce an Improved Locator/Identifier Split Architecture (ILISA) designed to enhance the mobility of nodes running a LOC/ID protocol by mitigating packet loss and reducing service disruption in handovers. A new network node, Loc-server, is central to the new architecture with the task of buffering incoming packets during handover and forwarding the packets to the MN on the completion of the node’s movement process. We implemented ILISA with LISP-MN on a laboratory testbed to evaluate its performance in different mobility scenarios. Our experimental results show a significant improvement in the mobility performance of MNs as reflected by the different network parameters investigated.

KW - Loc/ID split

KW - LISP-MN

KW - Mobility

KW - Network Architecture

KW - Handover

U2 - 10.17635/lancaster/thesis/135

DO - 10.17635/lancaster/thesis/135

M3 - Doctoral Thesis

PB - Lancaster University

ER -