Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Antimicrobial gallium-doped phosphate-based glasses
AU - Valappil, Sabeel P.
AU - Ready, Derren
AU - Neel, Ensanya A. Abou
AU - Pickup, David M.
AU - Chrzanowski, Wojciech
AU - O'Dell, Luke A.
AU - Newport, Robert J.
AU - Smith, Mark E.
AU - Wilson, Michael
AU - Knowles, Jonathan C.
PY - 2008/3/1
Y1 - 2008/3/1
N2 - Novel quaternary gallium-doped phosphate-based glasses (1, 3, and 5 mol % Ga2O3) were synthesized using a conventional melt quenching technique. The bactericidal activities of the glasses were tested against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Clostridium difficile) bacteria. Results of the solubility and ion release studies showed that these glass systems are unique for controlled delivery of Ga3+.Ga-71 NMR measurements showed that the gallium is mostly octahedrally coordinated by oxygen atoms, whilst FTIR spectroscopy provided evidence for the presence of a small proportion of tetrahedral gallium in the samples with the highest gallium content. FTIR and Raman spectra also afford an insight into the correlation between the structure and the observed dissolution behavior via an understanding of the atomic-scale network bonding characteristics. The results confirmed that the net bactericidal effect was due to Ga3+, and a concentration as low as 1 mol % Ga2O3 was sufficient to mount a potent antibacterial effect. The dearth of new antibiotics in development makes Ga3+ a potentially promising new therapeutic agent for pathogenic bacteria including MRSA and C. difficile.
AB - Novel quaternary gallium-doped phosphate-based glasses (1, 3, and 5 mol % Ga2O3) were synthesized using a conventional melt quenching technique. The bactericidal activities of the glasses were tested against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Clostridium difficile) bacteria. Results of the solubility and ion release studies showed that these glass systems are unique for controlled delivery of Ga3+.Ga-71 NMR measurements showed that the gallium is mostly octahedrally coordinated by oxygen atoms, whilst FTIR spectroscopy provided evidence for the presence of a small proportion of tetrahedral gallium in the samples with the highest gallium content. FTIR and Raman spectra also afford an insight into the correlation between the structure and the observed dissolution behavior via an understanding of the atomic-scale network bonding characteristics. The results confirmed that the net bactericidal effect was due to Ga3+, and a concentration as low as 1 mol % Ga2O3 was sufficient to mount a potent antibacterial effect. The dearth of new antibiotics in development makes Ga3+ a potentially promising new therapeutic agent for pathogenic bacteria including MRSA and C. difficile.
U2 - 10.1002/adfm.200700931
DO - 10.1002/adfm.200700931
M3 - Journal article
VL - 18
SP - 732
EP - 741
JO - Advanced Functional Materials
JF - Advanced Functional Materials
SN - 1616-3028
IS - 5
ER -