Rights statement: The final publication is available at Springer via http://dx.doi.org/10.1007/S11356-018-1756-0
Accepted author manuscript, 642 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Aqueous multivariate phototransformation kinetics of dissociated tetracycline
T2 - implications for the photochemical fate in surface waters
AU - Ge, Linke
AU - Dong, Qianqian
AU - Halsall, Crispin James
AU - Chen, Chang-Er
AU - Li, Jun
AU - Wang, Degao
AU - Zhang, Peng
AU - Yao, Ziwei
N1 - The final publication is available at Springer via http://dx.doi.org/10.1007/S11356-018-1756-0
PY - 2018/6
Y1 - 2018/6
N2 - Antibiotics are ubiquitous pollutants in aquatic systems and can exist as different dissociated species depending on the water pH. New knowledge of their multivariate photochemical behavior (i.e., the photobehavior of different ionized forms) is needed to improve our understanding on the fate and possible remediation of these pharmaceuticals in surface and waste waters. In this study, the photochemical degradation of aqueous tetracycline (TC) and its dissociated forms (TCH20, TCH−, and TC2−) was investigated. Simulated sunlight experiments and matrix calculations indicated that the three dissociated species had dissimilar photolytic kinetics and photooxidationreactivities. TC2− photodegraded the fastest due to apparent photolysis with a kinetic constant of 0.938 ± 0.021 min−1, followed by TCH− (0.020 ± 0.005 min−1) and TCH20 (0.012 ± 0.001 min−1), whereas TCH− was found to be the most highly reactive toward •OH (105.78 ± 3.40 M−1s−1), and TC2− reacted the fastest with 1O2 (344.96 ± 45.07 M−1 s−1). Water with relatively high pH (e.g., ~ 8–9) favors the dissociated forms of TCH− and TC2− which are most susceptible to photochemical loss processes compared to neutral TC. The calculated corresponding environmental half-lives (t1/2,E) in sunlit surface waters ranged from 0.05 h for pH = 9 inmidsummer to 3.68 h for pH = 6 in midwinter at 45° N latitude. The process was dominated by apparent photolysis (especially in summer, 62–91%), followed by 1O2 and •OH oxidation. Adjusting the pH to slightly alkaline conditions prior to UVor solar UV light treatment may be an effective way of enhancing the photochemical removal of TC from contaminated water.
AB - Antibiotics are ubiquitous pollutants in aquatic systems and can exist as different dissociated species depending on the water pH. New knowledge of their multivariate photochemical behavior (i.e., the photobehavior of different ionized forms) is needed to improve our understanding on the fate and possible remediation of these pharmaceuticals in surface and waste waters. In this study, the photochemical degradation of aqueous tetracycline (TC) and its dissociated forms (TCH20, TCH−, and TC2−) was investigated. Simulated sunlight experiments and matrix calculations indicated that the three dissociated species had dissimilar photolytic kinetics and photooxidationreactivities. TC2− photodegraded the fastest due to apparent photolysis with a kinetic constant of 0.938 ± 0.021 min−1, followed by TCH− (0.020 ± 0.005 min−1) and TCH20 (0.012 ± 0.001 min−1), whereas TCH− was found to be the most highly reactive toward •OH (105.78 ± 3.40 M−1s−1), and TC2− reacted the fastest with 1O2 (344.96 ± 45.07 M−1 s−1). Water with relatively high pH (e.g., ~ 8–9) favors the dissociated forms of TCH− and TC2− which are most susceptible to photochemical loss processes compared to neutral TC. The calculated corresponding environmental half-lives (t1/2,E) in sunlit surface waters ranged from 0.05 h for pH = 9 inmidsummer to 3.68 h for pH = 6 in midwinter at 45° N latitude. The process was dominated by apparent photolysis (especially in summer, 62–91%), followed by 1O2 and •OH oxidation. Adjusting the pH to slightly alkaline conditions prior to UVor solar UV light treatment may be an effective way of enhancing the photochemical removal of TC from contaminated water.
KW - Tetracycline
KW - Dissociation
KW - Apparent photolysis
KW - Hydroxyl radical
KW - Singlet oxygen
KW - Environmental half-lives
U2 - 10.1007/s11356-018-1765-0
DO - 10.1007/s11356-018-1765-0
M3 - Journal article
VL - 25
SP - 15726
EP - 15732
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
SN - 0944-1344
IS - 16
ER -