Home > Research > Publications & Outputs > Assessing the impacts of phosphorus inactive cl...

Electronic data

  • ENVPOL-D-16-00534R2

    Rights statement: This is the author’s version of a work that was accepted for publication in Environmental Pollution. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environmental Pollution, 219, 2016 DOI: 10.1016/j.envpol.2016.06.029

    Accepted author manuscript, 1.77 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Assessing the impacts of phosphorus inactive clay on phosphorus release control and phytoplankton community structure in eutrophic lakes

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>12/2016
<mark>Journal</mark>Environmental Pollution
Volume219
Number of pages11
Pages (from-to)620-630
Publication StatusPublished
Early online date23/06/16
<mark>Original language</mark>English

Abstract

Addressing the challenge that phosphorus is the key factor and cause for eutrophication, we evaluated the phosphorus release control performance of a new phosphorus inactive clay (PIC) and compared with Phoslock(®). Meanwhile, the impacts of PIC and Phoslock(®) on phytoplankton abundance and community structure in eutrophic water were also discussed. With the dosage of 40 mg/L, PIC effectively removed 97.7% of total phosphorus (TP) and 98.3% of soluble reactive phosphorus (SRP) in eutrophic waters. In sediments, Fe/Al-phosphorus and organic phosphorus remained stable whereas Ca-phosphorus had a significant increase of 13.1%. The results indicated that PIC may form the active overlay at water-sediment interface and decrease the bioavailability of phosphorus. The phytoplankton abundance was significantly reduced by PIC and decreased from (1.0-2.4) × 10(7) cells/L to (1.3-4.3) × 10(6) cells/L after 15 d simultaneous experiment. The phytoplankton community structure was also altered, where Cyanobacteria and Bacillariophyceae were the most inhibited and less dominant due to their sensitivity to phosphorus. After PIC treatment, the residual lanthanum concentration in water was 1.44-3.79 μg/L, and the residual aluminium concentration was low as 101.26-103.72 μg/L, which was much less than the recommended concentration of 200 μg/L. This study suggests that PIC is an appropriate material for phosphorus inactivation and algal bloom control, meaning its huge potential application in eutrophication restoration and management.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Environmental Pollution. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environmental Pollution, 219, 2016 DOI: 10.1016/j.envpol.2016.06.029