Accepted author manuscript, 10.8 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Assessing the sensitivity of stall-regulated wind turbine power to blade design using high-fidelity computational fluid dynamics
AU - Sanvito, Andrea
AU - Persico, Giacomo
AU - Campobasso, Sergio
PY - 2019/10/31
Y1 - 2019/10/31
N2 - This study provides a novel contribution toward the establishment of a new high-fidelity simulation-based design methodology for stall-regulated horizontal axis wind turbines. The aerodynamic design of these machines is complex, due to the difficulty of reliably predicting stall onset and poststall characteristics. Low-fidelity design methods, widely used in industry, are computationally efficient, but are often affected by significant uncertainty. Conversely, Navier–Stokes computational fluid dynamics (CFD) can reduce such uncertainty, resulting in lower development costs by reducing the need of field testing of designs not fit for purpose. Here, the compressible CFD research code COSA is used to assess the performance of two alternative designs of a 13-m stall-regulated rotor over a wide range of operating conditions. Validation of the numerical methodology is based on thorough comparisons of novel simulations and measured data of the National Renewable Energy Laboratory (NREL) phase VI turbine rotor, and one of the two industrial rotor designs. An excellent agreement is found in all cases. All simulations of the two industrial rotors are time-dependent, to capture the unsteadiness associated with stall which occurs at most wind speeds. The two designs are cross-compared, with emphasis on the different stall patterns resulting from particular design choices. The key novelty of this work is the CFD-based assessment of the correlation among turbine power, blade aerodynamics, and blade design variables (airfoil geometry, blade planform, and twist) over most operational wind speeds.
AB - This study provides a novel contribution toward the establishment of a new high-fidelity simulation-based design methodology for stall-regulated horizontal axis wind turbines. The aerodynamic design of these machines is complex, due to the difficulty of reliably predicting stall onset and poststall characteristics. Low-fidelity design methods, widely used in industry, are computationally efficient, but are often affected by significant uncertainty. Conversely, Navier–Stokes computational fluid dynamics (CFD) can reduce such uncertainty, resulting in lower development costs by reducing the need of field testing of designs not fit for purpose. Here, the compressible CFD research code COSA is used to assess the performance of two alternative designs of a 13-m stall-regulated rotor over a wide range of operating conditions. Validation of the numerical methodology is based on thorough comparisons of novel simulations and measured data of the National Renewable Energy Laboratory (NREL) phase VI turbine rotor, and one of the two industrial rotor designs. An excellent agreement is found in all cases. All simulations of the two industrial rotors are time-dependent, to capture the unsteadiness associated with stall which occurs at most wind speeds. The two designs are cross-compared, with emphasis on the different stall patterns resulting from particular design choices. The key novelty of this work is the CFD-based assessment of the correlation among turbine power, blade aerodynamics, and blade design variables (airfoil geometry, blade planform, and twist) over most operational wind speeds.
U2 - 10.1115/1.4044731
DO - 10.1115/1.4044731
M3 - Journal article
VL - 141
JO - Journal of Engineering for Gas Turbines and Power
JF - Journal of Engineering for Gas Turbines and Power
SN - 0742-4795
IS - 10
M1 - 101022
ER -