Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - AudioGest
T2 - 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2016
AU - Ruan, Wenjie
AU - Sheng, Quan Z.
AU - Yang, Lei
AU - Gu, Tao
AU - Xu, Peipei
AU - Shangguan, Longfei
PY - 2016/9/12
Y1 - 2016/9/12
N2 - Hand gesture is becoming an increasingly popular means of interacting with consumer electronic devices, such as mobile phones, tablets and laptops. In this paper, we present AudioGest, a device-free gesture recognition system that can accurately sense the hand in-air movement around user's devices. Compared to the state-of-the-art, AudioGest is superior in using only one pair of built-in speaker and microphone, without any extra hardware or infrastructure support and with no training, to achieve fine-grained hand detection. Our system is able to accurately recognize various hand gestures, estimate the hand in-air time, as well as average moving speed and waving range. We achieve this by transforming the device into an active sonar system that transmits inaudible audio signal and decodes the echoes of hand at its microphone. We address various challenges including cleaning the noisy reflected sound signal, interpreting the echo spectrogram into hand gestures, decoding the Doppler frequency shifts into the hand waving speed and range, as well as being robust to the environmental motion and signal drifting. We implement the proof-of-concept prototype in three different electronic devices and extensively evaluate the system in four real-world scenarios using 3,900 hand gestures that collected by five users for more than two weeks. Our results show that AudioGest can detect six hand gestures with an accuracy up to 96%, and by distinguishing the gesture attributions, it can provide up to 162 control commands for various applications.
AB - Hand gesture is becoming an increasingly popular means of interacting with consumer electronic devices, such as mobile phones, tablets and laptops. In this paper, we present AudioGest, a device-free gesture recognition system that can accurately sense the hand in-air movement around user's devices. Compared to the state-of-the-art, AudioGest is superior in using only one pair of built-in speaker and microphone, without any extra hardware or infrastructure support and with no training, to achieve fine-grained hand detection. Our system is able to accurately recognize various hand gestures, estimate the hand in-air time, as well as average moving speed and waving range. We achieve this by transforming the device into an active sonar system that transmits inaudible audio signal and decodes the echoes of hand at its microphone. We address various challenges including cleaning the noisy reflected sound signal, interpreting the echo spectrogram into hand gestures, decoding the Doppler frequency shifts into the hand waving speed and range, as well as being robust to the environmental motion and signal drifting. We implement the proof-of-concept prototype in three different electronic devices and extensively evaluate the system in four real-world scenarios using 3,900 hand gestures that collected by five users for more than two weeks. Our results show that AudioGest can detect six hand gestures with an accuracy up to 96%, and by distinguishing the gesture attributions, it can provide up to 162 control commands for various applications.
KW - Audio
KW - Doppler effect
KW - FFT
KW - Hand gestures
KW - Microphone
U2 - 10.1145/2971648.2971736
DO - 10.1145/2971648.2971736
M3 - Conference contribution/Paper
AN - SCOPUS:84991479868
SP - 474
EP - 485
BT - UbiComp 2016 - Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing
PB - Association for Computing Machinery, Inc
CY - New York
Y2 - 12 September 2016 through 16 September 2016
ER -