Home > Research > Publications & Outputs > Auditory cognition and perception of action vid...

Links

Text available via DOI:

View graph of relations

Auditory cognition and perception of action video game players

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
Article number14410
<mark>Journal publication date</mark>1/09/2020
<mark>Journal</mark>Scientific Reports
Volume10
Number of pages11
Publication StatusPublished
<mark>Original language</mark>English

Abstract

A training method to improve speech hearing in noise has proven elusive, with most methods failing to transfer to untrained tasks. One common approach to identify potentially viable training paradigms is to make use of cross-sectional designs. For instance, the consistent finding that people who chose to avidly engage with action video games as part of their normal life also show enhanced performance on non-game visual tasks has been used as a foundation to test the causal impact of such game play via true experiments (e.g., in more translational designs). However, little work has examined the association between action video game play and untrained auditory tasks, which would speak to the possible utility of using such games to improve speech hearing in noise. To examine this possibility, 80 participants with mixed action video game experience were tested on a visual reaction time task that has reliably shown superior performance in action video game players (AVGPs) compared to non-players (≤ 5 h/week across game categories) and multi-genre video game players (> 5 h/week across game categories). Auditory cognition and perception were tested using auditory reaction time and two speech-in-noise tasks. Performance of AVGPs on the visual task replicated previous positive findings. However, no significant benefit of action video game play was found on the auditory tasks. We suggest that, while AVGPs interact meaningfully with a rich visual environment during play, they may not interact with the games’ auditory environment. These results suggest that far transfer learning during action video game play is modality-specific and that an acoustically relevant auditory environment may be needed to improve auditory probabilistic thinking.