Rights statement: This is the author’s version of a work that was accepted for publication in Journal of Hazardous Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Hazardous Materials, 427, 2022 DOI: 10.1016/j.hazmat.2021.128117
Accepted author manuscript, 2.55 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Ball-milled magnetite for efficient arsenic decontamination
T2 - Insights into oxidation–adsorption mechanism
AU - Yang, X.
AU - Liu, S.
AU - Liang, T.
AU - Yan, X.
AU - Zhang, Y.
AU - Zhou, Y.
AU - Sarkar, B.
AU - Ok, Y.S.
N1 - This is the author’s version of a work that was accepted for publication in Journal of Hazardous Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Hazardous Materials, 427, 2022 DOI: 10.1016/j.hazmat.2021.128117
PY - 2022/4/5
Y1 - 2022/4/5
N2 - Conventional adsorbents for decontaminating arsenic exhibit low efficacy for the removal of arsenite (As(III)). This study aims to develop a robust As adsorbent from natural magnetite (M0) via a facile ball milling process, and evaluate their performance for decontaminating As(III) and As(V) in water and soil systems. The ball milling process decreased the particle size and crystallinity of M0, resulting in pronounced As removal by the ball-milled magnetite (Mm). Ball milling under air facilitated the formation of Fe-OH and Fe-COOH functional groups on Mm interface, contributing to effective elimination of As(III) and As(V) via hydrogen bonding and complexation mechanisms. Synergistic oxidation effects of hydroxyl and carboxyl groups, and reactive oxygen species (O2·-, and ·OH) on the transformation of As(III) to As(V) during the adsorption were proposed to explain the enhanced As(III) removal by Mm. A short-term soil incubation experiment indicated that the addition of Mm (10 wt%) induced a decrease in the concentration of exchangeable As by 30.25%, and facilitated the transformation of water-soluble As into residual fraction. Ball milling thus is considered as an eco-friendly (chemical-free) and inexpensive (scalable, one-stage process) method for upgrading the performance of natural magnetite towards remediating As, particularly for tackling the highly mobile As(III).
AB - Conventional adsorbents for decontaminating arsenic exhibit low efficacy for the removal of arsenite (As(III)). This study aims to develop a robust As adsorbent from natural magnetite (M0) via a facile ball milling process, and evaluate their performance for decontaminating As(III) and As(V) in water and soil systems. The ball milling process decreased the particle size and crystallinity of M0, resulting in pronounced As removal by the ball-milled magnetite (Mm). Ball milling under air facilitated the formation of Fe-OH and Fe-COOH functional groups on Mm interface, contributing to effective elimination of As(III) and As(V) via hydrogen bonding and complexation mechanisms. Synergistic oxidation effects of hydroxyl and carboxyl groups, and reactive oxygen species (O2·-, and ·OH) on the transformation of As(III) to As(V) during the adsorption were proposed to explain the enhanced As(III) removal by Mm. A short-term soil incubation experiment indicated that the addition of Mm (10 wt%) induced a decrease in the concentration of exchangeable As by 30.25%, and facilitated the transformation of water-soluble As into residual fraction. Ball milling thus is considered as an eco-friendly (chemical-free) and inexpensive (scalable, one-stage process) method for upgrading the performance of natural magnetite towards remediating As, particularly for tackling the highly mobile As(III).
KW - Arsenic
KW - Ball milling
KW - Magnetite
KW - Sustainable environmental engineering
KW - Synergistic oxidation
U2 - 10.1016/j.jhazmat.2021.128117
DO - 10.1016/j.jhazmat.2021.128117
M3 - Journal article
VL - 427
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
SN - 0304-3894
M1 - 128117
ER -