Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Behavior modeling using a hierarchical HMM approach
AU - Chiao, S.-Y.
AU - Xydeas, C.S.
PY - 2004/12/1
Y1 - 2004/12/1
N2 - We introduce a new methodology for the hierarchical modeling of the behavior-with-time of players operating and interacting within a certain application domain. Behavior modelling and characterization are performed online, given that a number of observations are made or sensed at regular time intervals with respect to each player. A key element of this hierarchical behavior modeling system architecture is a new formulation of multiple hidden Markov models (HMM) with discrete densities operating in parallel, with each HMM accepting a single feature-related observation sequence. However the proposed classification approach recognizes the existence of possible dependencies between the observation sequences of the features obtained for a given player. This property is effectively exploited in a new dependent-multiHMM with discrete densities (DM-HMM-D) classification approach. The proposed methodology is applied in modeling the behavior of aircrafts operating in relatively simple 3D "air-patrol" situations. Computer simulation results demonstrate the significant gains that can be obtained in system classification and modeling performance when compared to those obtained while using conventional independent-multidiscrete hidden Markov model (IM-HMM-D) schemes.
AB - We introduce a new methodology for the hierarchical modeling of the behavior-with-time of players operating and interacting within a certain application domain. Behavior modelling and characterization are performed online, given that a number of observations are made or sensed at regular time intervals with respect to each player. A key element of this hierarchical behavior modeling system architecture is a new formulation of multiple hidden Markov models (HMM) with discrete densities operating in parallel, with each HMM accepting a single feature-related observation sequence. However the proposed classification approach recognizes the existence of possible dependencies between the observation sequences of the features obtained for a given player. This property is effectively exploited in a new dependent-multiHMM with discrete densities (DM-HMM-D) classification approach. The proposed methodology is applied in modeling the behavior of aircrafts operating in relatively simple 3D "air-patrol" situations. Computer simulation results demonstrate the significant gains that can be obtained in system classification and modeling performance when compared to those obtained while using conventional independent-multidiscrete hidden Markov model (IM-HMM-D) schemes.
U2 - 10.1109/ICHIS.2004.29
DO - 10.1109/ICHIS.2004.29
M3 - Conference contribution/Paper
SN - 0-7695-2291-2
SP - 92
EP - 97
BT - Hybrid Intelligent Systems, 2004. HIS '04. Fourth International Conference on
PB - IEEE
ER -