Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Big data analytics for short and medium-term electricity load forecasting using an AI techniques ensembler
AU - Ayub, N.
AU - Irfan, M.
AU - Awais, M.
AU - Ali, U.
AU - Ali, T.
AU - Hamdi, M.
AU - Alghamdi, A.
AU - Muhammad, F.
PY - 2020/10/5
Y1 - 2020/10/5
N2 - Electrical load forecasting provides knowledge about future consumption and generation of electricity. There is a high level of fluctuation behavior between energy generation and consumption. Sometimes, the energy demand of the consumer becomes higher than the energy already generated, and vice versa. Electricity load forecasting provides a monitoring framework for future energy generation, consumption, and making a balance between them. In this paper, we propose a framework, in which deep learning and supervised machine learning techniques are implemented for electricity-load forecasting. A three-step model is proposed, which includes: feature selection, extraction, and classification. The hybrid of Random Forest (RF) and Extreme Gradient Boosting (XGB) is used to calculate features’ importance. The average feature importance of hybrid techniques selects the most relevant and high importance features in the feature selection method. The Recursive Feature Elimination (RFE) method is used to eliminate the irrelevant features in the feature extraction method. The load forecasting is performed with Support Vector Machines (SVM) and a hybrid of Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The meta-heuristic algorithms, i.e., Grey Wolf Optimization (GWO) and Earth Worm Optimization (EWO) are applied to tune the hyper-parameters of SVM and CNN-GRU, respectively. The accuracy of our enhanced techniques CNN-GRU-EWO and SVM-GWO is 96.33% and 90.67%, respectively. Our proposed techniques CNN-GRU-EWO and SVM-GWO perform 7% and 3% better than the State-Of-The-Art (SOTA). In the end, a comparison with SOTA techniques is performed to show the improvement of the proposed techniques. This comparison showed that the proposed technique performs well and results in the lowest performance error rates and highest accuracy rates as compared to other techniques. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
AB - Electrical load forecasting provides knowledge about future consumption and generation of electricity. There is a high level of fluctuation behavior between energy generation and consumption. Sometimes, the energy demand of the consumer becomes higher than the energy already generated, and vice versa. Electricity load forecasting provides a monitoring framework for future energy generation, consumption, and making a balance between them. In this paper, we propose a framework, in which deep learning and supervised machine learning techniques are implemented for electricity-load forecasting. A three-step model is proposed, which includes: feature selection, extraction, and classification. The hybrid of Random Forest (RF) and Extreme Gradient Boosting (XGB) is used to calculate features’ importance. The average feature importance of hybrid techniques selects the most relevant and high importance features in the feature selection method. The Recursive Feature Elimination (RFE) method is used to eliminate the irrelevant features in the feature extraction method. The load forecasting is performed with Support Vector Machines (SVM) and a hybrid of Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The meta-heuristic algorithms, i.e., Grey Wolf Optimization (GWO) and Earth Worm Optimization (EWO) are applied to tune the hyper-parameters of SVM and CNN-GRU, respectively. The accuracy of our enhanced techniques CNN-GRU-EWO and SVM-GWO is 96.33% and 90.67%, respectively. Our proposed techniques CNN-GRU-EWO and SVM-GWO perform 7% and 3% better than the State-Of-The-Art (SOTA). In the end, a comparison with SOTA techniques is performed to show the improvement of the proposed techniques. This comparison showed that the proposed technique performs well and results in the lowest performance error rates and highest accuracy rates as compared to other techniques. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
KW - Big data analytics
KW - Deep learning
KW - Load forecasting
KW - Optimization techniques
KW - Advanced Analytics
KW - Big data
KW - Convolutional neural networks
KW - Data Analytics
KW - Decision trees
KW - Electric power plant loads
KW - Extraction
KW - Feature extraction
KW - Forecasting
KW - Heuristic algorithms
KW - Learning systems
KW - Optimization
KW - Recurrent neural networks
KW - Support vector machines
KW - Electrical load forecasting
KW - Electricity load forecasting
KW - Feature extraction methods
KW - Feature selection methods
KW - Meta heuristic algorithm
KW - Monitoring frameworks
KW - Recursive feature elimination
KW - Supervised machine learning
KW - Electric load forecasting
U2 - 10.3390/en13195193
DO - 10.3390/en13195193
M3 - Journal article
VL - 13
JO - Energies
JF - Energies
SN - 1996-1073
IS - 19
ER -