Home > Research > Publications & Outputs > Biodegradation of Dichlorodiphenyltrichloroetha...
View graph of relations

Biodegradation of Dichlorodiphenyltrichloroethanes (DDTs) and Hexachlorocyclohexanes (HCHs) with plant and nutrients and their effects on the microbial ecological kinetics

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • Guangdong Sun
  • Xu Zhang
  • Qing Hu
  • Heqing Zhang
  • Dayi Zhang
  • Guanghe Li
Close
<mark>Journal publication date</mark>1/02/2015
<mark>Journal</mark>Microbial Ecology
Issue number2
Volume69
Number of pages12
Pages (from-to)281-292
Publication StatusPublished
<mark>Original language</mark>English

Abstract

Four pilot-scale test mesocosms were conducted for the remediation of organochlorine pesticides (OCPs)-contaminated aged soil. The results indicate that the effects on degradation of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) were in the following order: nutrients/plant bioaugmentation (81.18 % for HCHs; 85.4 % for DDTs) > nutrients bioaugmentation > plant bioaugmentation > only adding water > control, and nutrients/plant bioaugmentation greatly enhanced the degradation of HCHs (81.18 %) and DDTs (85.4 %). The bacterial community structure, diversity and composition were assessed by 454-pyrosequencing of 16S recombinant RNA (rRNA), whereas the abundance of linA gene was determined by quantitative polymerase chain reaction. Distinct differences in bacterial community composition, structure, and diversity were a function of remediation procedure. Predictability of HCH/DDT degradation in soils was also investigated. A positive correlation between linA gene abundance and the removal ratio of HCHs was indicated by correlation analyses. A similar relationship was also confirmed between the degradation of HCHs/DDTs and the abundance of some assemblages (Gammaproteobacteria and Flavobacteria). Our results offer microbial ecological insight into the degradation of HCHs and DDTs in aged contaminated soil, which is helpful for the intensification of bioremediation through modifying plant-microbe patterns, and cessation of costly and time-consuming assays.