Home > Research > Publications & Outputs > Biomass yield potential on U.S. marginal land a...

Links

Text available via DOI:

View graph of relations

Biomass yield potential on U.S. marginal land and its contribution to reach net‐zero emission

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Biomass yield potential on U.S. marginal land and its contribution to reach net‐zero emission. / He, Yufeng; Jaiswal, Deepak; Long, Stephen P. et al.
In: GCB Bioenergy, Vol. 16, No. 2, e13128, 29.02.2024.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

He, Y, Jaiswal, D, Long, SP, Liang, XZ & Matthews, ML 2024, 'Biomass yield potential on U.S. marginal land and its contribution to reach net‐zero emission', GCB Bioenergy, vol. 16, no. 2, e13128. https://doi.org/10.1111/gcbb.13128

APA

He, Y., Jaiswal, D., Long, S. P., Liang, XZ., & Matthews, M. L. (2024). Biomass yield potential on U.S. marginal land and its contribution to reach net‐zero emission. GCB Bioenergy, 16(2), Article e13128. https://doi.org/10.1111/gcbb.13128

Vancouver

He Y, Jaiswal D, Long SP, Liang XZ, Matthews ML. Biomass yield potential on U.S. marginal land and its contribution to reach net‐zero emission. GCB Bioenergy. 2024 Feb 29;16(2):e13128. Epub 2024 Jan 18. doi: 10.1111/gcbb.13128

Author

He, Yufeng ; Jaiswal, Deepak ; Long, Stephen P. et al. / Biomass yield potential on U.S. marginal land and its contribution to reach net‐zero emission. In: GCB Bioenergy. 2024 ; Vol. 16, No. 2.

Bibtex

@article{07c54056a36a443f8cca74b736600e3c,
title = "Biomass yield potential on U.S. marginal land and its contribution to reach net‐zero emission",
abstract = "Bioenergy with carbon capture and geological storage (BECCS) is considered one of the top options for both offsetting CO2 emissions and removing atmospheric CO2. BECCS requires using limited land resources efficiently while ensuring minimal adverse impacts on the delicate food‐energy‐water nexus. Perennial C4 biomass crops are productive on marginal land under low‐input conditions avoiding conflict with food and feed crops. The eastern half of the contiguous U.S. contains a large amount of marginal land, which is not economically viable for food production and liable to wind and water erosion under annual cultivation. However, this land is suitable for geological CO2 storage and perennial crop growth. Given the climate variation across the region, three perennials are major contenders for planting. The yield potential and stability of Miscanthus, switchgrass, and energycane across the region were compared to select which would perform best under the recent (2000–2014) and future (2036–2050) climates. Miscanthus performed best in the Midwest, switchgrass in the Northeast and energycane in the Southeast. On average, Miscanthus yield decreased from present 19.1 t/ha to future 16.8 t/ha; switchgrass yield from 3.5 to 2.4 t/ha; and energycane yield increased from 14 to 15 t/ha. Future yield stability decreased in the region with higher predicted drought stress. Combined, these crops could produce 0.6–0.62 billion tonnes biomass per year for the present and future. Using the biomass for power generation with CCS would capture 703–726 million tonnes of atmospheric CO2 per year, which would offset about 11% of current total U.S. emission. Further, this biomass approximates the net primary CO2 productivity of two times the current baseline productivity of existing vegetation, suggesting a huge potential for BECCS. Beyond BECCS, C4 perennial grasses could also increase soil carbon and provide biomass for emerging industries developing replacements for non‐renewable products including plastics and building materials.",
keywords = "C4 crop growth modeling, CO2 emission reduction, bioenergy crops, carbon capture and storage, biomass production, marginal land use",
author = "Yufeng He and Deepak Jaiswal and Long, {Stephen P.} and Xin‐Zhong Liang and Matthews, {Megan L.}",
year = "2024",
month = feb,
day = "29",
doi = "10.1111/gcbb.13128",
language = "English",
volume = "16",
journal = "GCB Bioenergy",
issn = "1757-1693",
publisher = "Blackwell Publishing Ltd",
number = "2",

}

RIS

TY - JOUR

T1 - Biomass yield potential on U.S. marginal land and its contribution to reach net‐zero emission

AU - He, Yufeng

AU - Jaiswal, Deepak

AU - Long, Stephen P.

AU - Liang, Xin‐Zhong

AU - Matthews, Megan L.

PY - 2024/2/29

Y1 - 2024/2/29

N2 - Bioenergy with carbon capture and geological storage (BECCS) is considered one of the top options for both offsetting CO2 emissions and removing atmospheric CO2. BECCS requires using limited land resources efficiently while ensuring minimal adverse impacts on the delicate food‐energy‐water nexus. Perennial C4 biomass crops are productive on marginal land under low‐input conditions avoiding conflict with food and feed crops. The eastern half of the contiguous U.S. contains a large amount of marginal land, which is not economically viable for food production and liable to wind and water erosion under annual cultivation. However, this land is suitable for geological CO2 storage and perennial crop growth. Given the climate variation across the region, three perennials are major contenders for planting. The yield potential and stability of Miscanthus, switchgrass, and energycane across the region were compared to select which would perform best under the recent (2000–2014) and future (2036–2050) climates. Miscanthus performed best in the Midwest, switchgrass in the Northeast and energycane in the Southeast. On average, Miscanthus yield decreased from present 19.1 t/ha to future 16.8 t/ha; switchgrass yield from 3.5 to 2.4 t/ha; and energycane yield increased from 14 to 15 t/ha. Future yield stability decreased in the region with higher predicted drought stress. Combined, these crops could produce 0.6–0.62 billion tonnes biomass per year for the present and future. Using the biomass for power generation with CCS would capture 703–726 million tonnes of atmospheric CO2 per year, which would offset about 11% of current total U.S. emission. Further, this biomass approximates the net primary CO2 productivity of two times the current baseline productivity of existing vegetation, suggesting a huge potential for BECCS. Beyond BECCS, C4 perennial grasses could also increase soil carbon and provide biomass for emerging industries developing replacements for non‐renewable products including plastics and building materials.

AB - Bioenergy with carbon capture and geological storage (BECCS) is considered one of the top options for both offsetting CO2 emissions and removing atmospheric CO2. BECCS requires using limited land resources efficiently while ensuring minimal adverse impacts on the delicate food‐energy‐water nexus. Perennial C4 biomass crops are productive on marginal land under low‐input conditions avoiding conflict with food and feed crops. The eastern half of the contiguous U.S. contains a large amount of marginal land, which is not economically viable for food production and liable to wind and water erosion under annual cultivation. However, this land is suitable for geological CO2 storage and perennial crop growth. Given the climate variation across the region, three perennials are major contenders for planting. The yield potential and stability of Miscanthus, switchgrass, and energycane across the region were compared to select which would perform best under the recent (2000–2014) and future (2036–2050) climates. Miscanthus performed best in the Midwest, switchgrass in the Northeast and energycane in the Southeast. On average, Miscanthus yield decreased from present 19.1 t/ha to future 16.8 t/ha; switchgrass yield from 3.5 to 2.4 t/ha; and energycane yield increased from 14 to 15 t/ha. Future yield stability decreased in the region with higher predicted drought stress. Combined, these crops could produce 0.6–0.62 billion tonnes biomass per year for the present and future. Using the biomass for power generation with CCS would capture 703–726 million tonnes of atmospheric CO2 per year, which would offset about 11% of current total U.S. emission. Further, this biomass approximates the net primary CO2 productivity of two times the current baseline productivity of existing vegetation, suggesting a huge potential for BECCS. Beyond BECCS, C4 perennial grasses could also increase soil carbon and provide biomass for emerging industries developing replacements for non‐renewable products including plastics and building materials.

KW - C4 crop growth modeling

KW - CO2 emission reduction

KW - bioenergy crops

KW - carbon capture and storage

KW - biomass production

KW - marginal land use

U2 - 10.1111/gcbb.13128

DO - 10.1111/gcbb.13128

M3 - Journal article

VL - 16

JO - GCB Bioenergy

JF - GCB Bioenergy

SN - 1757-1693

IS - 2

M1 - e13128

ER -