Home > Research > Publications & Outputs > Biorefinery of Tomato Leaves by Integrated Extr...


Text available via DOI:

View graph of relations

Biorefinery of Tomato Leaves by Integrated Extraction and Membrane Processes to Obtain Fractions That Enhance Induced Resistance against Pseudomonas syringae Infection

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Article number585
<mark>Journal publication date</mark>31/05/2022
Issue number6
Number of pages13
Publication StatusPublished
<mark>Original language</mark>English


Tomato leaves have been shown to contain significant amounts of important metabolites involved in protection against abiotic and biotic stress and/or possessing important therapeutic properties. In this work, a systematic study was carried out to evaluate the potential of a sustainable process for the fractionation of major biomolecules from tomato leaves, by combining aqueous extraction and membrane processes. The extraction parameters (temperature, pH, and liquid/solid ratio (L/S)) were optimized to obtain high amounts of biomolecules (proteins, carbohydrates, biophenols). Subsequently, the aqueous extract was processed by membrane processes, using 30–50 kDa and 1–5 kDa membranes for the first and second stage, respectively. The permeate from the first stage, which was used to remove proteins from the aqueous extract, was further fractionated in the second stage, where the appropriate membrane material was also selected. Of all the membranes tested in the first stage, regenerated cellulose membranes (RC) showed the best performance in terms of higher rejection of proteins (85%) and lower fouling index (less than 15% compared to 80% of the other membranes tested), indicating that they are suitable for fractionation of proteins from biophenols and carbohydrates. In the second stage, the best results were obtained by using polyethersulfone (PES) membranes with an NMWCO of 5 kDa, since the greatest difference between the rejection coefficients of carbohydrates and phenolic compounds was obtained. In vivo bioactivity tests confirmed that fractions obtained with PES 5 kDa membranes were able to induce plant defense against P. syringae.