Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Blur-generated non-separable space-time models.
AU - Brown, P. E.
AU - Kaaresn, K. F.
AU - Roberts, G. O.
AU - Tonellato, S.
PY - 2000
Y1 - 2000
N2 - Statistical space–time modelling has traditionally been concerned with separable covariance functions, meaning that the covariance function is a product of a purely temporal function and a purely spatial function. We draw attention to a physical dispersion model which could model phenomena such as the spread of an air pollutant. We show that this model has a non-separable covariance function. The model is well suited to a wide range of realistic problems which will be poorly fitted by separable models. The model operates successively in time: the spatial field at time t +1 is obtained by 'blurring' the field at time t and adding a spatial random field. The model is first introduced at discrete time steps, and the limit is taken as the length of the time steps goes to 0. This gives a consistent continuous model with parameters that are interpretable in continuous space and independent of sampling intervals. Under certain conditions the blurring must be a Gaussian smoothing kernel. We also show that the model is generated by a stochastic differential equation which has been studied by several researchers previously.
AB - Statistical space–time modelling has traditionally been concerned with separable covariance functions, meaning that the covariance function is a product of a purely temporal function and a purely spatial function. We draw attention to a physical dispersion model which could model phenomena such as the spread of an air pollutant. We show that this model has a non-separable covariance function. The model is well suited to a wide range of realistic problems which will be poorly fitted by separable models. The model operates successively in time: the spatial field at time t +1 is obtained by 'blurring' the field at time t and adding a spatial random field. The model is first introduced at discrete time steps, and the limit is taken as the length of the time steps goes to 0. This gives a consistent continuous model with parameters that are interpretable in continuous space and independent of sampling intervals. Under certain conditions the blurring must be a Gaussian smoothing kernel. We also show that the model is generated by a stochastic differential equation which has been studied by several researchers previously.
KW - Blurring • Continuous time • Infinitely divisible functions
U2 - 10.1111/1467-9868.00269
DO - 10.1111/1467-9868.00269
M3 - Journal article
VL - 62
SP - 847
EP - 860
JO - Journal of the Royal Statistical Society: Series B (Statistical Methodology)
JF - Journal of the Royal Statistical Society: Series B (Statistical Methodology)
SN - 1369-7412
IS - 4
ER -