Home > Research > Publications & Outputs > Bootstrapping techniques to improve the bandwid...
View graph of relations

Bootstrapping techniques to improve the bandwidth of transimpedance amplifiers.

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNChapter

Published

Standard

Bootstrapping techniques to improve the bandwidth of transimpedance amplifiers. / Hoyle, C.; Peyton, A. J.
IEE Colloguium on Analog Signal Processing (Ref. No. 1998/472). Oxford: IEE, 1998. p. 7/1-7/6.

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNChapter

Harvard

APA

Vancouver

Hoyle C, Peyton AJ. Bootstrapping techniques to improve the bandwidth of transimpedance amplifiers. In IEE Colloguium on Analog Signal Processing (Ref. No. 1998/472). Oxford: IEE. 1998. p. 7/1-7/6

Author

Hoyle, C. ; Peyton, A. J. / Bootstrapping techniques to improve the bandwidth of transimpedance amplifiers. IEE Colloguium on Analog Signal Processing (Ref. No. 1998/472). Oxford : IEE, 1998. pp. 7/1-7/6

Bibtex

@inbook{50b9b7d719c643e2820cf355c8ddd7e6,
title = "Bootstrapping techniques to improve the bandwidth of transimpedance amplifiers.",
abstract = "Transimpedance amplifiers using voltage feedback operational amplifiers are widely used for current to voltage conversion in applications when a moderate/high bandwidth and a high sensitivity are required, such as photodiodes, photomultipliers, electron multipliers and capacitive sensors. The conventional circuit presents a virtual earth to the input and at low frequencies, the input capacitance is usually not a significant concern. However, at high frequencies and especially for high sensitivity circuits, the total input capacitance can severely limit the available bandwidth from the circuit. The input capacitance in effect constitutes part of the feedback network of the op-amp and hence reduces the available loop gain at high frequencies. In some cases a high input capacitance can cause the circuit to have a lightly damped or unstable dynamic response. Lag compensation by simply adding feedback capacitance is generally used to guarantee stability, however this approach does not permit the full gain-bandwidth characteristic of the op-amp to be fully exploited. Active techniques for reducing the input capacitance, for instance bootstrapping, have been previously reported and over the last ten years several papers have described successful examples of transimpedance circuits using bootstrapping. The basic bootstrapping principle is to use an additional buffer amplifier to actively charge and discharge to input capacitance as required. By doing so the effective source capacitance is reduced, enabling the overall bandwidth of the circuit to be increased. This paper presents a brief overview of the technique and introduces for the first time the four possible bootstrap configurations (series or shunt bootstrapping loops, with either floating or grounded sources) applied to the basic transimpedance circuit. Previous published techniques have employed the series technique, for example in the case of a photodiode bootstrapped by the source of the input FET. The shunt configuration has not been reported as in this paper. This work presents new analysis and practical results that demonstrate the shunt bootstrap configuration on a transimpedance circuit. A doubling of bandwidth over the standard transimpedance circuit has been realised using the same type of op-amp for both the amplifying and bootstrap elements of the circuit.",
author = "C. Hoyle and Peyton, {A. J.}",
note = "{"}{\textcopyright}1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.{"} {"}This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.{"}",
year = "1998",
language = "English",
pages = "7/1--7/6",
booktitle = "IEE Colloguium on Analog Signal Processing (Ref. No. 1998/472)",
publisher = "IEE",

}

RIS

TY - CHAP

T1 - Bootstrapping techniques to improve the bandwidth of transimpedance amplifiers.

AU - Hoyle, C.

AU - Peyton, A. J.

N1 - "©1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

PY - 1998

Y1 - 1998

N2 - Transimpedance amplifiers using voltage feedback operational amplifiers are widely used for current to voltage conversion in applications when a moderate/high bandwidth and a high sensitivity are required, such as photodiodes, photomultipliers, electron multipliers and capacitive sensors. The conventional circuit presents a virtual earth to the input and at low frequencies, the input capacitance is usually not a significant concern. However, at high frequencies and especially for high sensitivity circuits, the total input capacitance can severely limit the available bandwidth from the circuit. The input capacitance in effect constitutes part of the feedback network of the op-amp and hence reduces the available loop gain at high frequencies. In some cases a high input capacitance can cause the circuit to have a lightly damped or unstable dynamic response. Lag compensation by simply adding feedback capacitance is generally used to guarantee stability, however this approach does not permit the full gain-bandwidth characteristic of the op-amp to be fully exploited. Active techniques for reducing the input capacitance, for instance bootstrapping, have been previously reported and over the last ten years several papers have described successful examples of transimpedance circuits using bootstrapping. The basic bootstrapping principle is to use an additional buffer amplifier to actively charge and discharge to input capacitance as required. By doing so the effective source capacitance is reduced, enabling the overall bandwidth of the circuit to be increased. This paper presents a brief overview of the technique and introduces for the first time the four possible bootstrap configurations (series or shunt bootstrapping loops, with either floating or grounded sources) applied to the basic transimpedance circuit. Previous published techniques have employed the series technique, for example in the case of a photodiode bootstrapped by the source of the input FET. The shunt configuration has not been reported as in this paper. This work presents new analysis and practical results that demonstrate the shunt bootstrap configuration on a transimpedance circuit. A doubling of bandwidth over the standard transimpedance circuit has been realised using the same type of op-amp for both the amplifying and bootstrap elements of the circuit.

AB - Transimpedance amplifiers using voltage feedback operational amplifiers are widely used for current to voltage conversion in applications when a moderate/high bandwidth and a high sensitivity are required, such as photodiodes, photomultipliers, electron multipliers and capacitive sensors. The conventional circuit presents a virtual earth to the input and at low frequencies, the input capacitance is usually not a significant concern. However, at high frequencies and especially for high sensitivity circuits, the total input capacitance can severely limit the available bandwidth from the circuit. The input capacitance in effect constitutes part of the feedback network of the op-amp and hence reduces the available loop gain at high frequencies. In some cases a high input capacitance can cause the circuit to have a lightly damped or unstable dynamic response. Lag compensation by simply adding feedback capacitance is generally used to guarantee stability, however this approach does not permit the full gain-bandwidth characteristic of the op-amp to be fully exploited. Active techniques for reducing the input capacitance, for instance bootstrapping, have been previously reported and over the last ten years several papers have described successful examples of transimpedance circuits using bootstrapping. The basic bootstrapping principle is to use an additional buffer amplifier to actively charge and discharge to input capacitance as required. By doing so the effective source capacitance is reduced, enabling the overall bandwidth of the circuit to be increased. This paper presents a brief overview of the technique and introduces for the first time the four possible bootstrap configurations (series or shunt bootstrapping loops, with either floating or grounded sources) applied to the basic transimpedance circuit. Previous published techniques have employed the series technique, for example in the case of a photodiode bootstrapped by the source of the input FET. The shunt configuration has not been reported as in this paper. This work presents new analysis and practical results that demonstrate the shunt bootstrap configuration on a transimpedance circuit. A doubling of bandwidth over the standard transimpedance circuit has been realised using the same type of op-amp for both the amplifying and bootstrap elements of the circuit.

M3 - Chapter

SP - 7/1-7/6

BT - IEE Colloguium on Analog Signal Processing (Ref. No. 1998/472)

PB - IEE

CY - Oxford

ER -