Home > Research > Publications & Outputs > Bridging the Domain Gap in Scene Flow Estimatio...

Links

Text available via DOI:

View graph of relations

Bridging the Domain Gap in Scene Flow Estimation via Hierarchical Smoothness Refinement

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • Dejun Zhang
  • Mian Zhang
  • Xuefeng Tan
  • Jun Liu
Close
Article number236
<mark>Journal publication date</mark>31/08/2024
<mark>Journal</mark>ACM Transactions on Multimedia Computing, Communications, and Applications
Issue number8
Volume20
Number of pages21
Pages (from-to)1-21
Publication StatusPublished
Early online date12/06/24
<mark>Original language</mark>English

Abstract

This article introduces SmoothFlowNet3D, an innovative encoder-decoder architecture specifically designed for bridging the domain gap in scene flow estimation. To achieve this goal, SmoothFlowNet3D divides the scene flow estimation task into two stages: initial scene flow estimation and smoothness refinement. Specifically, SmoothFlowNet3D comprises a hierarchical encoder that extracts multi-scale point cloud features from two consecutive frames, along with a hierarchical decoder responsible for predicting the initial scene flow and further refining it to achieve smoother estimation. To generate the initial scene flow, a cross-frame nearest-neighbor search operation is performed between the features extracted from two consecutive frames, resulting in forward and backward flow embeddings. These embeddings are then combined to form the bidirectional flow embedding, serving as input for predicting the initial scene flow. Additionally, a flow smoothing module based on the self-attention mechanism is proposed to predict the smoothing error and facilitate the refinement of the initial scene flow for more accurate and smoother estimation results. Extensive experiments demonstrate that the proposed SmoothFlowNet3D approach achieves state-of-the-art performance on both synthetic datasets and real LiDAR point clouds, confirming its effectiveness in enhancing scene flow smoothness.