Home > Research > Publications & Outputs > Buffering effect of suspended particulate matte...

Electronic data

  • Binder1

    Rights statement: This is the author’s version of a work that was accepted for publication in Water Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Water Research, 216, 2022 DOI: 10.1016/j.watres.2022.118350

    Accepted author manuscript, 976 KB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Buffering effect of suspended particulate matter on phosphorus cycling during transport from rivers to lakes

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • Ningning Ji
  • Yong Liu
  • Shengrui Wang
  • Zhihao Wu
  • Hong Li
Close
Article number118350
<mark>Journal publication date</mark>1/06/2022
<mark>Journal</mark>Water Research
Volume216
Number of pages11
Publication StatusPublished
Early online date28/03/22
<mark>Original language</mark>English

Abstract

How to maintain harmful algal blooms under phosphate-limitation is still an open question in mesotrophic/eutrophic lakes. Little evidence for the importance of suspended particulate matter (SPM) in mediating phosphorus cycling and contributing to eutrophication has been generated for aquatic ecosystems, especially in coupled river-lake systems. In this study, we examined phosphorus transport and redistribution in a river-lake system in the Lake Erhai basin by establishing the relations between phosphorus distribution and phosphorus sorption behavior on SPM, and predicted how changes in the quality and quantity of SPM might influence phosphorus cycling by laboratory experiments and modeling. During the wet seasons, TP pool shifted from being dominated by total dissolved phosphorus (TDP) in the Miju River and estuary regions (73±5%) to being dominated by total particulate phosphorus (TPP) (74±11%) in Lake Erhai. The detritus-SPM in the Miju River as a P-sink and phytoplankton-SPM in Lake Erhai as a P-source buffered TDP levels during the wet seasons, which attributed to P activity and phytoplankton-POC of SPM. Increasing SPM concentrations could enhance the P-buffering. When C0 ≤ 5 μmol/L and phytoplankton-SPM ≥ 16 mg/L, P release increased by 50%-300%; when C0 ≥ 5 μmol/L and detritus-SPM ≥ 16 mg/L, P removal could exceed 30%. This study highlights two distinctive roles of SPM in regulating P cycling during transport from rivers to lakes. Especially the phytoplankton-SPM to buffer phosphate-limitation during algal blooms should not be ignored, which could provide theoretical references for the mechanism of continued algal blooms in mesotrophic lakes.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Water Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Water Research, 216, 2022 DOI: 10.1016/j.watres.2022.118350