Home > Research > Publications & Outputs > Cellular algebras arising from Hecke algebras o...
View graph of relations

Cellular algebras arising from Hecke algebras of type Hn.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Cellular algebras arising from Hecke algebras of type Hn. / Green, R. M.
In: Mathematische Zeitschrift, Vol. 229, No. 2, 1998, p. 365-383.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Green, RM 1998, 'Cellular algebras arising from Hecke algebras of type Hn.', Mathematische Zeitschrift, vol. 229, no. 2, pp. 365-383. https://doi.org/10.1007/PL00004661

APA

Green, R. M. (1998). Cellular algebras arising from Hecke algebras of type Hn. Mathematische Zeitschrift, 229(2), 365-383. https://doi.org/10.1007/PL00004661

Vancouver

Green RM. Cellular algebras arising from Hecke algebras of type Hn. Mathematische Zeitschrift. 1998;229(2):365-383. doi: 10.1007/PL00004661

Author

Green, R. M. / Cellular algebras arising from Hecke algebras of type Hn. In: Mathematische Zeitschrift. 1998 ; Vol. 229, No. 2. pp. 365-383.

Bibtex

@article{c8ef6cf39d954ec8b28b2ae0bf59911e,
title = "Cellular algebras arising from Hecke algebras of type Hn.",
abstract = "We study a finite-dimensional quotient of the Hecke algebra of type for general n, using a calculus of diagrams. This provides a basis of monomials in a certain set of generators. Using this, we prove a conjecture of C.K. Fan about the semisimplicity of the quotient algebra. We also discuss the cellular structure of the algebra, with certain restrictions on the ground ring.",
author = "Green, {R. M.}",
year = "1998",
doi = "10.1007/PL00004661",
language = "English",
volume = "229",
pages = "365--383",
journal = "Mathematische Zeitschrift",
issn = "1432-1823",
publisher = "Springer New York",
number = "2",

}

RIS

TY - JOUR

T1 - Cellular algebras arising from Hecke algebras of type Hn.

AU - Green, R. M.

PY - 1998

Y1 - 1998

N2 - We study a finite-dimensional quotient of the Hecke algebra of type for general n, using a calculus of diagrams. This provides a basis of monomials in a certain set of generators. Using this, we prove a conjecture of C.K. Fan about the semisimplicity of the quotient algebra. We also discuss the cellular structure of the algebra, with certain restrictions on the ground ring.

AB - We study a finite-dimensional quotient of the Hecke algebra of type for general n, using a calculus of diagrams. This provides a basis of monomials in a certain set of generators. Using this, we prove a conjecture of C.K. Fan about the semisimplicity of the quotient algebra. We also discuss the cellular structure of the algebra, with certain restrictions on the ground ring.

U2 - 10.1007/PL00004661

DO - 10.1007/PL00004661

M3 - Journal article

VL - 229

SP - 365

EP - 383

JO - Mathematische Zeitschrift

JF - Mathematische Zeitschrift

SN - 1432-1823

IS - 2

ER -