Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Changes in tissue freezing in Senecio vulgaris infected by Rust (Puccinia lagenophorae)
AU - Paul, Nigel
AU - AYRES, P G
PY - 1991/8
Y1 - 1991/8
N2 - Freezing of healthy and rust (Puccinia lagenophorae) infected leaves of Senecio vulgaris was compared calorimetrically by thermal analysis. In fully expanded leaves the threshold freezing temperature was in the range −6.8 to −8.4 °C in controls but −3.0 to −5.1 °C in leaves with sporulating rust sori. Comparable values in expanding leaves were −5.0 to −8.9 °C and −3.9 to −6.7 °C for healthy and rusted tissues, respectively. The bulk tissue freezing point was between −1.0 and −4.0 °C in both fully expanded and expanding healthy leaves, and was increased by infection by between +0.2 and 2.5 °C. Whereas healthy leaves supercooled by 3.1−5.8 °C, rusted leaves supercooled by only 1.8−4.9 °C Supercooling of control leaves was reduced by dusting with aeciospores, particularly when leaves were wounded to simulate the rupture of the surface caused by sporulation, but wounding alone had no significant effect. Supercooling of distilled water was also significantly reduced by aeciospores, suspended at a concentration of 105 spores ml−1.It is concluded that rust-induced changes in leaf freezing in S. vulgaris grown in controlled environments were due to an increase in the number of sites for ice nucleation, caused by the presence of the aeciospores, and increased penetration of ice into internal tissues, resulting from damage to the cuticle and epidermis. Although data for frost resistance obtained in the growth-room are similar to previous field observations, the role of the above mechanisms under field conditions remains unproven.
AB - Freezing of healthy and rust (Puccinia lagenophorae) infected leaves of Senecio vulgaris was compared calorimetrically by thermal analysis. In fully expanded leaves the threshold freezing temperature was in the range −6.8 to −8.4 °C in controls but −3.0 to −5.1 °C in leaves with sporulating rust sori. Comparable values in expanding leaves were −5.0 to −8.9 °C and −3.9 to −6.7 °C for healthy and rusted tissues, respectively. The bulk tissue freezing point was between −1.0 and −4.0 °C in both fully expanded and expanding healthy leaves, and was increased by infection by between +0.2 and 2.5 °C. Whereas healthy leaves supercooled by 3.1−5.8 °C, rusted leaves supercooled by only 1.8−4.9 °C Supercooling of control leaves was reduced by dusting with aeciospores, particularly when leaves were wounded to simulate the rupture of the surface caused by sporulation, but wounding alone had no significant effect. Supercooling of distilled water was also significantly reduced by aeciospores, suspended at a concentration of 105 spores ml−1.It is concluded that rust-induced changes in leaf freezing in S. vulgaris grown in controlled environments were due to an increase in the number of sites for ice nucleation, caused by the presence of the aeciospores, and increased penetration of ice into internal tissues, resulting from damage to the cuticle and epidermis. Although data for frost resistance obtained in the growth-room are similar to previous field observations, the role of the above mechanisms under field conditions remains unproven.
KW - SENECIO-VULGARIS (GROUNDSEL)
KW - PUCCINIA-LAGENOPHORAE (RUST)
KW - LOW TEMPERATURE
KW - FREEZING RESISTANCE
KW - BACTERIAL ICE NUCLEATION
KW - WINTER BARLEY
KW - FROST INJURY
KW - PLANTS
KW - PHOSPHATE
KW - SURVIVAL
KW - MILDEW
M3 - Journal article
VL - 68
SP - 129
EP - 133
JO - Annals of Botany
JF - Annals of Botany
SN - 1095-8290
IS - 2
ER -