Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate
AU - Gibson, I.R.
AU - Rehman, I.
AU - Best, S.M.
AU - Bonfield, W.
PY - 2000
Y1 - 2000
N2 - The structural changes that occur during the transformation of a Ca-deficient apatite, prepared by a wet chemical method, to β-TCp were investigated. X-ray diffraction (XRD) analysis of as-prepared samples and samples calcined at temperatures between 500 and 1100°C showed that the transformation occurs over the temperature range 710-740°C, under non-equilibrium conditions. The change in crystallite size with increasing calcination/sintering temperature was studied by XRD using the Scherrer formula. Fourier transform infra-red (FTIR) analysis indicated considerable structural change in samples above and below this temperature range. Changes were observed in the hydroxyl, carbonate and phosphate bands as the calcination temperature was increased from 500 to 1100°C. Even once a single β-TCP phase is obtained at 740°C there remains a considerable amount of structural change at temperatures between 740 and 1100°C. This effect was illustrated by an unusual change in the lattice parameters of the β-TCP structure and significant changes in the phosphate bands of FTIR spectra as the calcination temperature was increased. The results obtained in this study show that the combined experimental techniques of XRD and FTIR are excellent complimentary methods for characterizing structural changes that occur during phase transformations. © 2000 Kluwer Academic Publishers. The structural changes that occur during the transformation of a Ca-deficient apatite, prepared by a wet chemical method, to β-TCp were investigated. X-ray diffraction (XRD) analysis of as-prepared samples and samples calcined at temperatures between 500 and 1100°C showed that the transformation occurs over the temperature range 710-740°C, under non-equilibrium conditions. The change in crystalline size with increasing calcination/sintering temperature was studied by XRD using the Scherrer formula. Fourier transform infra-red (FTIR) analysis indicated considerable structural change in samples above and below this temperature range. Changes were observed in the hydroxyl, carbonate and phosphate bands as the calcination temperature was increased from 500 to 1100°C. Even once a single β-TCP phase is obtained at 740°C there remains a considerable amount of structural change at temperatures between 740 and 1100°C. This effect was illustrated by an unusual change in the lattice parameters of the β-TCP structure and significant changes in the phosphate bands of FTIR spectra as the calcination temperature was increased. The results obtained in this study show that the combined experimental techniques of XRD and FTIR are excellent complimentary methods for characterizing structural changes that occur during phase transformations.
AB - The structural changes that occur during the transformation of a Ca-deficient apatite, prepared by a wet chemical method, to β-TCp were investigated. X-ray diffraction (XRD) analysis of as-prepared samples and samples calcined at temperatures between 500 and 1100°C showed that the transformation occurs over the temperature range 710-740°C, under non-equilibrium conditions. The change in crystallite size with increasing calcination/sintering temperature was studied by XRD using the Scherrer formula. Fourier transform infra-red (FTIR) analysis indicated considerable structural change in samples above and below this temperature range. Changes were observed in the hydroxyl, carbonate and phosphate bands as the calcination temperature was increased from 500 to 1100°C. Even once a single β-TCP phase is obtained at 740°C there remains a considerable amount of structural change at temperatures between 740 and 1100°C. This effect was illustrated by an unusual change in the lattice parameters of the β-TCP structure and significant changes in the phosphate bands of FTIR spectra as the calcination temperature was increased. The results obtained in this study show that the combined experimental techniques of XRD and FTIR are excellent complimentary methods for characterizing structural changes that occur during phase transformations. © 2000 Kluwer Academic Publishers. The structural changes that occur during the transformation of a Ca-deficient apatite, prepared by a wet chemical method, to β-TCp were investigated. X-ray diffraction (XRD) analysis of as-prepared samples and samples calcined at temperatures between 500 and 1100°C showed that the transformation occurs over the temperature range 710-740°C, under non-equilibrium conditions. The change in crystalline size with increasing calcination/sintering temperature was studied by XRD using the Scherrer formula. Fourier transform infra-red (FTIR) analysis indicated considerable structural change in samples above and below this temperature range. Changes were observed in the hydroxyl, carbonate and phosphate bands as the calcination temperature was increased from 500 to 1100°C. Even once a single β-TCP phase is obtained at 740°C there remains a considerable amount of structural change at temperatures between 740 and 1100°C. This effect was illustrated by an unusual change in the lattice parameters of the β-TCP structure and significant changes in the phosphate bands of FTIR spectra as the calcination temperature was increased. The results obtained in this study show that the combined experimental techniques of XRD and FTIR are excellent complimentary methods for characterizing structural changes that occur during phase transformations.
KW - Biocompatibility
KW - Calcination
KW - Crystal lattices
KW - Fourier transform infrared spectroscopy
KW - Lattice constants
KW - Phase transitions
KW - Sintering
KW - Thermal effects
KW - Wetting
KW - X ray diffraction analysis
KW - Calcium deficient apatite
KW - Crystallite size
KW - Scherrer formula
KW - Structural changes
KW - Wet chemical method
KW - Calcium compounds
KW - apatite
KW - calcium phosphate
KW - article
KW - conformational transition
KW - crystal structure
KW - Fourier transformation
KW - priority journal
KW - temperature dependence
KW - ultraviolet spectroscopy
KW - X ray diffraction
U2 - 10.1023/A:1008905613182
DO - 10.1023/A:1008905613182
M3 - Journal article
VL - 11
SP - 799
EP - 804
JO - Journal of Materials Science: Materials in Medicine
JF - Journal of Materials Science: Materials in Medicine
SN - 0957-4530
IS - 12
ER -