Accepted author manuscript, 1.22 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Charting the Irreversible Degradation Modes of Low Bandgap Pb‐Sn Perovskite Compositions for De‐Risking Practical Industrial Development
AU - Kamaraki, Christina
AU - Klug, Matthew T.
AU - Lim, Vincent J.‐Y.
AU - Zibouche, Nourdine
AU - Herz, Laura M.
AU - Islam, M. Saiful
AU - Case, Christopher
AU - Miranda Perez, Laura
PY - 2024/3/8
Y1 - 2024/3/8
N2 - The commercialization of a solar technology necessitates the fulfillment of specific requirements both regarding efficiency and stability to enter and gain space in the photovoltaic market. These aims are heavily dependent on the selection of suitable materials, which is critical for suppressing any reliability risks arising from inherent instabilities. Focusing on the absorber material, herein the most suitable low bandgap lead‐tin composition candidate for all‐perovskite tandem applications is investigated by studying their degradation mechanisms with both widely available and advanced characterization techniques. Three irreversible degradation processes are identified in narrow bandgap Pb‐Sn perovskite absorbers: 1) Tin (Sn) oxidation upon air exposure, 2) methylammonium (MA) loss upon heat exposure, and 3) formamidinium (FA) and cesium (Cs) segregation leading to impurity phase formation. From an industrial perspective, it is proposed to refocus attention on FASn0.5Pb0.5I3 which minimizes all three effects while maintaining a suitable bandgap for a bottom cell and good performance. Moreover, a practical and highly sensitive characterization method is proposed to monitor the oxidation, which can be deployed both in laboratory and industrial environments and provide useful information for the technological development process, including, the effectiveness of encapsulation methods, and the acceptable time windows for air exposure.
AB - The commercialization of a solar technology necessitates the fulfillment of specific requirements both regarding efficiency and stability to enter and gain space in the photovoltaic market. These aims are heavily dependent on the selection of suitable materials, which is critical for suppressing any reliability risks arising from inherent instabilities. Focusing on the absorber material, herein the most suitable low bandgap lead‐tin composition candidate for all‐perovskite tandem applications is investigated by studying their degradation mechanisms with both widely available and advanced characterization techniques. Three irreversible degradation processes are identified in narrow bandgap Pb‐Sn perovskite absorbers: 1) Tin (Sn) oxidation upon air exposure, 2) methylammonium (MA) loss upon heat exposure, and 3) formamidinium (FA) and cesium (Cs) segregation leading to impurity phase formation. From an industrial perspective, it is proposed to refocus attention on FASn0.5Pb0.5I3 which minimizes all three effects while maintaining a suitable bandgap for a bottom cell and good performance. Moreover, a practical and highly sensitive characterization method is proposed to monitor the oxidation, which can be deployed both in laboratory and industrial environments and provide useful information for the technological development process, including, the effectiveness of encapsulation methods, and the acceptable time windows for air exposure.
KW - General Materials Science
KW - Renewable Energy, Sustainability and the Environment
U2 - 10.1002/aenm.202302916
DO - 10.1002/aenm.202302916
M3 - Journal article
VL - 14
JO - Advanced Energy Materials
JF - Advanced Energy Materials
SN - 1614-6832
IS - 10
M1 - 2302916
ER -