Home > Research > Publications & Outputs > Chemical fractionation of lake sediments to det...
View graph of relations

Chemical fractionation of lake sediments to determine the effects of land-use change on nutrient loading.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Chemical fractionation of lake sediments to determine the effects of land-use change on nutrient loading. / Heathwaite, A. Louise.
In: Journal of Hydrology, Vol. 159, No. 1-4, 07.1994, p. 395-421.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Heathwaite AL. Chemical fractionation of lake sediments to determine the effects of land-use change on nutrient loading. Journal of Hydrology. 1994 Jul;159(1-4):395-421. doi: 10.1016/0022-1694(94)90269-0

Author

Bibtex

@article{7e4238b6a41e4517a4c4ff74c9379c60,
title = "Chemical fractionation of lake sediments to determine the effects of land-use change on nutrient loading.",
abstract = "Lake studies allow contemporary sediment and nutrient dynamics to be placed in a historical context in order that trends and rates of change in catchment inputs may be calculated. Here, a synthesis of the temporal information contained in catchment and lake sediment records is attempted. A chemical fractionation technique is used to isolate the different sediment sources contained in the lake core, and 210Pb dates provide an accurate record of changes in lake sediment sources over the past 100 years. The extent to which land-use records, collated from agricultural census returns, and process-based studies of sediment and nutrient export from different catchment land uses can be used to explain the trends observed in the lake sediments is examined. Sediment influx to the study lake has increased from less than 2 mm year−1 prior to the Second World War to over 10 mm year−1 at present. The source of the sediment is largely unaltered and unweathered allochthonous material eroded from the catchment. Land-use records suggest that the intensification of agriculture, characterized by a shift towards arable land immediately postwar, followed by an increase in the area of temporary grass in the 1960s, may be the cause of accelerated catchment erosion; both land-use changes would have increased the area of ploughed land in the catchment. An increase in the number of cattle and sheep in the catchment from around 2000 and 6000, respectively, in the 1940s, to a peak of nearly 7000 cattle and over 15 000 sheep in the 1980s, provides a further source of sediment and nutrients. Livestock are grazed on permanent grassland which is commonly located on steep hillslopes and in riparian zones where saturation-excess surface runoff may be an important hydrological pathway. Rainfall simulation experiments show that surface runoff from heavily grazed grassland has a high suspended sediment, ammonium-nitrogen and particulate phosphorus load. The combined effect of the long-term increase in the organic loading from livestock and the inorganic N and P load from fertilizers, may be the source of nutrient enrichment in the lake.",
author = "Heathwaite, {A. Louise}",
note = "Chemical fractionation of lake sediments to determine the effects of land-use change on nutrient loading. 12 cites: http://scholar.google.com/scholar?num=100&hl=en&lr=&cites=7288400167202566872",
year = "1994",
month = jul,
doi = "10.1016/0022-1694(94)90269-0",
language = "English",
volume = "159",
pages = "395--421",
journal = "Journal of Hydrology",
publisher = "Elsevier Science B.V.",
number = "1-4",

}

RIS

TY - JOUR

T1 - Chemical fractionation of lake sediments to determine the effects of land-use change on nutrient loading.

AU - Heathwaite, A. Louise

N1 - Chemical fractionation of lake sediments to determine the effects of land-use change on nutrient loading. 12 cites: http://scholar.google.com/scholar?num=100&hl=en&lr=&cites=7288400167202566872

PY - 1994/7

Y1 - 1994/7

N2 - Lake studies allow contemporary sediment and nutrient dynamics to be placed in a historical context in order that trends and rates of change in catchment inputs may be calculated. Here, a synthesis of the temporal information contained in catchment and lake sediment records is attempted. A chemical fractionation technique is used to isolate the different sediment sources contained in the lake core, and 210Pb dates provide an accurate record of changes in lake sediment sources over the past 100 years. The extent to which land-use records, collated from agricultural census returns, and process-based studies of sediment and nutrient export from different catchment land uses can be used to explain the trends observed in the lake sediments is examined. Sediment influx to the study lake has increased from less than 2 mm year−1 prior to the Second World War to over 10 mm year−1 at present. The source of the sediment is largely unaltered and unweathered allochthonous material eroded from the catchment. Land-use records suggest that the intensification of agriculture, characterized by a shift towards arable land immediately postwar, followed by an increase in the area of temporary grass in the 1960s, may be the cause of accelerated catchment erosion; both land-use changes would have increased the area of ploughed land in the catchment. An increase in the number of cattle and sheep in the catchment from around 2000 and 6000, respectively, in the 1940s, to a peak of nearly 7000 cattle and over 15 000 sheep in the 1980s, provides a further source of sediment and nutrients. Livestock are grazed on permanent grassland which is commonly located on steep hillslopes and in riparian zones where saturation-excess surface runoff may be an important hydrological pathway. Rainfall simulation experiments show that surface runoff from heavily grazed grassland has a high suspended sediment, ammonium-nitrogen and particulate phosphorus load. The combined effect of the long-term increase in the organic loading from livestock and the inorganic N and P load from fertilizers, may be the source of nutrient enrichment in the lake.

AB - Lake studies allow contemporary sediment and nutrient dynamics to be placed in a historical context in order that trends and rates of change in catchment inputs may be calculated. Here, a synthesis of the temporal information contained in catchment and lake sediment records is attempted. A chemical fractionation technique is used to isolate the different sediment sources contained in the lake core, and 210Pb dates provide an accurate record of changes in lake sediment sources over the past 100 years. The extent to which land-use records, collated from agricultural census returns, and process-based studies of sediment and nutrient export from different catchment land uses can be used to explain the trends observed in the lake sediments is examined. Sediment influx to the study lake has increased from less than 2 mm year−1 prior to the Second World War to over 10 mm year−1 at present. The source of the sediment is largely unaltered and unweathered allochthonous material eroded from the catchment. Land-use records suggest that the intensification of agriculture, characterized by a shift towards arable land immediately postwar, followed by an increase in the area of temporary grass in the 1960s, may be the cause of accelerated catchment erosion; both land-use changes would have increased the area of ploughed land in the catchment. An increase in the number of cattle and sheep in the catchment from around 2000 and 6000, respectively, in the 1940s, to a peak of nearly 7000 cattle and over 15 000 sheep in the 1980s, provides a further source of sediment and nutrients. Livestock are grazed on permanent grassland which is commonly located on steep hillslopes and in riparian zones where saturation-excess surface runoff may be an important hydrological pathway. Rainfall simulation experiments show that surface runoff from heavily grazed grassland has a high suspended sediment, ammonium-nitrogen and particulate phosphorus load. The combined effect of the long-term increase in the organic loading from livestock and the inorganic N and P load from fertilizers, may be the source of nutrient enrichment in the lake.

U2 - 10.1016/0022-1694(94)90269-0

DO - 10.1016/0022-1694(94)90269-0

M3 - Journal article

VL - 159

SP - 395

EP - 421

JO - Journal of Hydrology

JF - Journal of Hydrology

IS - 1-4

ER -