Chlorinated paraffins (CPs), as technical mixtures of polychlorinated alkanes (PCAs), are ubiquitous in the environment. CPs tend to behave in a similar way to persistent organic pollutants (POPs), leading several countries to impose regulations on the use of CPs. In this article, we review the literature on the properties of CPs, the current analytical tools available to determine CPs in various types of environmental matrices, and concentrations found in the environment. In particular, concentrations of CPs in environmental compartments including air, water, sediments, biota, human food products and human tissues are summarized. Priorities for future research are: improvements in analytical methodologies (reducing the complexity of the analysis, producing reference materials and performing interlaboratory studies); determining background levels of chlorinated paraffins in the environment and human populations (this question should be answered using quality assured analytical tools allowing the intercomparison of data); and investigating the sources of CPs to the environment and to humans. Chlorinated paraffins (CPs), as technical mixtures of polychlorinated alkanes (PCAs), are ubiquitous in the environment. CPs tend to behave in a similar way to persistent organic pollutants (POPs), leading several countries to impose regulations on the use of CPs. In this article, we review the literature on the properties of CPs, the current analytical tools available to determine CPs in various types of environmental matrices, and concentrations found in the environment. In particular, concentrations of CPs in environmental compartments including air, water, sediments, biota, human food products and human tissues are summarized. Priorities for future research are: improvements in analytical methodologies (reducing the complexity of the analysis, producing reference materials and performing interlaboratory studies); determining background levels of chlorinated paraffins in the environment and human populations (this question should be answered using quality assured analytical tools allowing the intercomparison of data); and investigating the sources of CPs to the environment and to humans.