Home > Research > Publications & Outputs > Circular dichroism spectroscopy identifies the ...

Electronic data

  • acschemneuro.0c00154

    Rights statement: This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Chemical Neuroscience, copyright ©2020 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see [URL]

    Accepted author manuscript, 1.33 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Circular dichroism spectroscopy identifies the β-adrenoceptor agonist salbutamol as a direct inhibitor of tau filament formation in vitro.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

E-pub ahead of print

Standard

Circular dichroism spectroscopy identifies the β-adrenoceptor agonist salbutamol as a direct inhibitor of tau filament formation in vitro. / Middleton, David; Townsend, David; Hughes, Eleri et al.
In: ACS Chemical Neuroscience, 10.06.2020.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Middleton D, Townsend D, Hughes E, Fullwood N, Siligardi G, Hussain R et al. Circular dichroism spectroscopy identifies the β-adrenoceptor agonist salbutamol as a direct inhibitor of tau filament formation in vitro. ACS Chemical Neuroscience. 2020 Jun 10. Epub 2020 Jun 10. doi: 10.1021/acschemneuro.0c00154

Author

Bibtex

@article{2ac1d570c03043fcb5d24dce5c09015e,
title = "Circular dichroism spectroscopy identifies the β-adrenoceptor agonist salbutamol as a direct inhibitor of tau filament formation in vitro.",
abstract = "Potential drug treatments for Alzheimer{\textquoteright}s disease (AD) may be found by identifying compounds that block the assembly of the microtubule-associated protein tau into neurofibrillar tangles associated with neuron destabilisation and cell death. Here, a small library of structurally diverse compounds was screened in vitro for the ability to inhibit tau aggregation, using high-throughput synchrotron radiation circular dichroism (HT-SRCD) as a novel tool to monitor the structural changes in the protein as it assembles into filaments. The catecholamine epinephrine was found to be the most effective tau aggregation inhibitor of all 88 compounds screened. Subsequently, we tested chemically-similar phenolamine drugs from the β-adrenergic receptor (βAR) agonist class, using conventional circular dichroism spectroscopy, thioflavin T fluorescence and transmission electron microscopy. Two compounds, salbutamol and dobutamine, used widely in the treatment of respiratory and cardiovascular disease, impede the aggregation of tau in vitro. Dobutamine reduces both the rate and yield of tau filament formation over 24 hours, although it has little effect on the structural transition of tau into β-sheet structures over 24 hours. Salbutamol also reduces the yield and rate of filament formation, and additionally inhibits tau{\textquoteright}s structural change into β-sheet rich aggregates. Salbutamol has a good safety profile and a half-life that facilitates permeation through the blood brain barrier and could represent an expediated approach to developing AD therapeutics. These results provide the motivation for in vivo evaluation of pre-existing β-adrenergic receptor agonists as a potential therapy for AD through the reduction of tau deposition in AD.",
author = "David Middleton and David Townsend and Eleri Hughes and Nigel Fullwood and Giuliano Siligardi and Rohanah Hussain and Bara Mala",
note = "This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Chemical Neuroscience, copyright {\textcopyright}2020 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see [URL] ",
year = "2020",
month = jun,
day = "10",
doi = "10.1021/acschemneuro.0c00154",
language = "English",
journal = "ACS Chemical Neuroscience",
issn = "1948-7193",
publisher = "American Chemical Society",

}

RIS

TY - JOUR

T1 - Circular dichroism spectroscopy identifies the β-adrenoceptor agonist salbutamol as a direct inhibitor of tau filament formation in vitro.

AU - Middleton, David

AU - Townsend, David

AU - Hughes, Eleri

AU - Fullwood, Nigel

AU - Siligardi, Giuliano

AU - Hussain, Rohanah

AU - Mala, Bara

N1 - This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Chemical Neuroscience, copyright ©2020 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see [URL]

PY - 2020/6/10

Y1 - 2020/6/10

N2 - Potential drug treatments for Alzheimer’s disease (AD) may be found by identifying compounds that block the assembly of the microtubule-associated protein tau into neurofibrillar tangles associated with neuron destabilisation and cell death. Here, a small library of structurally diverse compounds was screened in vitro for the ability to inhibit tau aggregation, using high-throughput synchrotron radiation circular dichroism (HT-SRCD) as a novel tool to monitor the structural changes in the protein as it assembles into filaments. The catecholamine epinephrine was found to be the most effective tau aggregation inhibitor of all 88 compounds screened. Subsequently, we tested chemically-similar phenolamine drugs from the β-adrenergic receptor (βAR) agonist class, using conventional circular dichroism spectroscopy, thioflavin T fluorescence and transmission electron microscopy. Two compounds, salbutamol and dobutamine, used widely in the treatment of respiratory and cardiovascular disease, impede the aggregation of tau in vitro. Dobutamine reduces both the rate and yield of tau filament formation over 24 hours, although it has little effect on the structural transition of tau into β-sheet structures over 24 hours. Salbutamol also reduces the yield and rate of filament formation, and additionally inhibits tau’s structural change into β-sheet rich aggregates. Salbutamol has a good safety profile and a half-life that facilitates permeation through the blood brain barrier and could represent an expediated approach to developing AD therapeutics. These results provide the motivation for in vivo evaluation of pre-existing β-adrenergic receptor agonists as a potential therapy for AD through the reduction of tau deposition in AD.

AB - Potential drug treatments for Alzheimer’s disease (AD) may be found by identifying compounds that block the assembly of the microtubule-associated protein tau into neurofibrillar tangles associated with neuron destabilisation and cell death. Here, a small library of structurally diverse compounds was screened in vitro for the ability to inhibit tau aggregation, using high-throughput synchrotron radiation circular dichroism (HT-SRCD) as a novel tool to monitor the structural changes in the protein as it assembles into filaments. The catecholamine epinephrine was found to be the most effective tau aggregation inhibitor of all 88 compounds screened. Subsequently, we tested chemically-similar phenolamine drugs from the β-adrenergic receptor (βAR) agonist class, using conventional circular dichroism spectroscopy, thioflavin T fluorescence and transmission electron microscopy. Two compounds, salbutamol and dobutamine, used widely in the treatment of respiratory and cardiovascular disease, impede the aggregation of tau in vitro. Dobutamine reduces both the rate and yield of tau filament formation over 24 hours, although it has little effect on the structural transition of tau into β-sheet structures over 24 hours. Salbutamol also reduces the yield and rate of filament formation, and additionally inhibits tau’s structural change into β-sheet rich aggregates. Salbutamol has a good safety profile and a half-life that facilitates permeation through the blood brain barrier and could represent an expediated approach to developing AD therapeutics. These results provide the motivation for in vivo evaluation of pre-existing β-adrenergic receptor agonists as a potential therapy for AD through the reduction of tau deposition in AD.

U2 - 10.1021/acschemneuro.0c00154

DO - 10.1021/acschemneuro.0c00154

M3 - Journal article

JO - ACS Chemical Neuroscience

JF - ACS Chemical Neuroscience

SN - 1948-7193

ER -