Home > Research > Publications & Outputs > Circular plates with one diametral stiffener: a...

Associated organisational unit

View graph of relations

Circular plates with one diametral stiffener: an elastic large deflection analysis.

Research output: Contribution to Journal/MagazineJournal article

Published
<mark>Journal publication date</mark>1997
<mark>Journal</mark>Computers and Structures
Issue number4
Volume63
Number of pages9
Pages (from-to)775-783
Publication StatusPublished
<mark>Original language</mark>English

Abstract

A new discretely stiffened circular plate theory is presented in outline. The governing plate equations are solved using a finite-difference implementation of the dynamic relaxation (DR) algorithm. Large deflection numerical solutions are presented for uniformly loaded clamped plates stiffened by a single eccentric rectangular cross-section diametral stiffener. Deflection, stress resultant and stress couple results for two stiffener depths are compared with corresponding results computed with the ANSYS finite element program. It is shown that the two analyses produce results which are not wholly in agreement, particularly in the case of the stress resultants at the centre of the plate. It is suggested that extrapolation and degeneracy procedures used in the finite element analysis may possibly account for the differences in the stress resultants.