Rights statement: ©2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Accepted author manuscript, 2.91 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Class-guided Swin Transformer for Semantic Segmentation of Remote Sensing Imagery
AU - Meng, Xiaoliang
AU - Yang, Yuechi
AU - Wang, Libo
AU - Wang, Teng
AU - Li, Rui
AU - Zhang, Ce
N1 - ©2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PY - 2022/10/17
Y1 - 2022/10/17
N2 - Semantic segmentation of remote sensing images plays a crucial role in a wide variety of practical applications, including land cover mapping, environmental protection, and economic assessment. In the last decade, convolutional neural network (CNN) is the mainstream deep learning-based method of semantic segmentation. Compared with conventional methods, CNN-based methods learn semantic features automatically, thereby achieving strong representation capability. However, the local receptive field of the convolution operation limits CNN-based methods from capturing long-range dependencies. In contrast, Vision Transformer (ViT) demonstrates its great potential in modeling long-range dependencies and obtains superior results in semantic segmentation. Inspired by this, in this letter, we propose a class-guided Swin Transformer (CG-Swin) for semantic segmentation of remote sensing images. Specifically, we adopt a Transformer-based encoder-decoder structure, which introduces the Swin Transformer backbone as the encoder and designs a class-guided Transformer block to construct the decoder. The experimental results on ISPRS Vaihingen and Potsdam datasets demonstrate the significant breakthrough of the proposed method over ten benchmarks, outperforming both advanced CNN-based and recent Transformer-based approaches.
AB - Semantic segmentation of remote sensing images plays a crucial role in a wide variety of practical applications, including land cover mapping, environmental protection, and economic assessment. In the last decade, convolutional neural network (CNN) is the mainstream deep learning-based method of semantic segmentation. Compared with conventional methods, CNN-based methods learn semantic features automatically, thereby achieving strong representation capability. However, the local receptive field of the convolution operation limits CNN-based methods from capturing long-range dependencies. In contrast, Vision Transformer (ViT) demonstrates its great potential in modeling long-range dependencies and obtains superior results in semantic segmentation. Inspired by this, in this letter, we propose a class-guided Swin Transformer (CG-Swin) for semantic segmentation of remote sensing images. Specifically, we adopt a Transformer-based encoder-decoder structure, which introduces the Swin Transformer backbone as the encoder and designs a class-guided Transformer block to construct the decoder. The experimental results on ISPRS Vaihingen and Potsdam datasets demonstrate the significant breakthrough of the proposed method over ten benchmarks, outperforming both advanced CNN-based and recent Transformer-based approaches.
KW - Fully Transformer network
KW - class-guided mechanism
KW - semantic segmentation
KW - remote sensing
U2 - 10.1109/LGRS.2022.3215200
DO - 10.1109/LGRS.2022.3215200
M3 - Journal article
VL - 19
JO - IEEE Geoscience and Remote Sensing Letters
JF - IEEE Geoscience and Remote Sensing Letters
SN - 1545-598X
IS - 10
M1 - 6517505
ER -